Advertisement

Environmental Modeling & Assessment

, Volume 10, Issue 1, pp 43–53 | Cite as

Modeling biogeochemistry and forest management practices for assessing GHGs mitigation strategies in forested wetlands

  • Jianbo Cui
  • Changsheng Li
  • Carl Trettin
Article

Abstract

Despite the importance of forested wetland in the global carbon cycle, no widely applicable ecosystem model exists for this ecosystem. This study reports the linkage between Wetland-DNDC and MIKE SHE for carbon dynamics and GHGs mitigation strategies analyses in forested wetland. Wetland-DNDC was modified by parameterizing forest management practices and refining anaerobic biogeochemical processes. Mortality due to senescence was estimated as a function of tree age or as a function of the relative biomass. We used a harvesting damage mortality coefficient as a linear function of time with three parameters: Initial mortality, Duration of the damage and Intensity of the initial harvesting. The model was validated against experimental data obtained from the GNF site near Florida. As a preliminary application, we simulated the effect of water table position and forest management practices on GHGs emissions and carbon dynamics to test the capabilities of the models for simulating seasonal and long-term carbon budget in forested wetland.

Keywords

forest wetland greenhouse gases emission C–N modeling mitigation strategies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.D. Aber, P.B. Reich and M.L. Goulden, Oecologia 10 (1996) 257–265. CrossRefGoogle Scholar
  2. [2]
    I.C. Anderson and J.S. Levine, Applied and Environmental Microbiology 51 (1985) 938–945. Google Scholar
  3. [3]
    J.R.M. Arah and K. Stephen, Atmos. Environ. 32 (1998) 3257–3264. CrossRefGoogle Scholar
  4. [4]
    M. Aurela, T. Laurila and J.-P. Tuoviner, J. Geophys. Res. 106 (2001) 1623–1638. CrossRefGoogle Scholar
  5. [5]
    F.G. Bader, Biotechnol. Bioeng. 20 (1978) 183–202. CrossRefPubMedGoogle Scholar
  6. [6]
    A. Bollmann and R. Conrad, Global Change Biology 4 (1998) 387–396. CrossRefGoogle Scholar
  7. [7]
    A.L. Bouber and A.V. Lotov, MIKE11 and interactive decision maps in the framework of DSS for water quality planning, in: Proceedings of 3rd DHI Software Conference, Helsingør, Denmark (1999). Google Scholar
  8. [8]
    J.L. Bubier, G. Bhatia, T.R. Moore, N.T. Roulet and P.M. Lafleur, Between year and site variability in growing season net ecosystem CO2 exchange at a large peatland, Ontario, Canada, Ecosystems (2003). Google Scholar
  9. [9]
    M. Cao, S. Marshall and K. Gregson, J. Geophys. Res. 101(D9) (1996) 14399–14414. CrossRefGoogle Scholar
  10. [10]
    M. Cargnelutti, N. Quaranta, A. Refsgaard and L. Basberg, Application of MIKE-SHE to the alluvial aquifer of River Adige’s valley, in: Proceedings of 3rd DHI Software Conference, Helsingør, Denmark (1999). Google Scholar
  11. [11]
    O.G. Chertov, Ecological Modeling 50 (1990) 107–132. CrossRefGoogle Scholar
  12. [12]
    P.M. Crill, K.B. Bartlett, R.C. Harriss, E. Gorham, E.S. Verry, D.I. Sebacher, L. Madzar and W. Sanner, Global Biogeochem. Cycles 2 (1988) 371–384. Google Scholar
  13. [13]
    P. De Willigen, Fertilizer Research 27 (1991) 141–149. CrossRefGoogle Scholar
  14. [14]
    S. Fiedler and M. Sommer, Global Biogeochem. Cycles 14 (2000) 1081–1093. CrossRefGoogle Scholar
  15. [15]
    G. Granberg, H. Ottosson-Lofvenius, H. Grip, I. Sundh and M. Nilsson, Global Biogeochem. Cycles 15(4) (2001) 977–991. CrossRefGoogle Scholar
  16. [16]
    R.F. Grant, Soil Biol. Biochem. 30(7) (1998) 883–896. CrossRefGoogle Scholar
  17. [17]
    E.A. Holland and D.S. Schimel, J. Geophys. Res. 99 (1994) 1563–1571. CrossRefGoogle Scholar
  18. [18]
    IPCC, Intergovernmental Panel on Climate Change, Guidelines for National Greenhouse Gas Inventories, OECD/ODCE, Paris (1991). Google Scholar
  19. [19]
    D.W. Johnson, J.D. Knoepp, W.T. Swank, J. Shan, L.A. Morris, D.H. Van Lear and P.R. Kapeluck, Environmental Pollution 116 (2002) S201–S208. CrossRefPubMedGoogle Scholar
  20. [20]
    D.W. Joiner, P.M. Lafleur, J.H. McCaughey and P.A. Bartlett, J. Geophys. Res. 104 (1999) 27663–27672. CrossRefGoogle Scholar
  21. [21]
    A. Kettunen, V. Kaitala, A. Lehtinen, A. Lohila, J. Alm, J. Silvola and P.J. Martikainen, Soil Biol. Biochem. 31 (1999) 1741–1749. CrossRefGoogle Scholar
  22. [22]
    P.M. Lafleur, N.T. Roulet and S.W. Admiral, J. Geophys. Res. 106 (2001) 3071–3081. CrossRefGoogle Scholar
  23. [23]
    C. Li, J. Aber, F. Stange, K. Butterbach-Bahl and H. Papen, J. Geophys. Res. 105 (2000) 4369–4384. CrossRefGoogle Scholar
  24. [24]
    C. Li, S. Frolking and T.A. Frolking, J. Geophys. Res. 97 (1992) 9759–9776. Google Scholar
  25. [25]
    M.E. McClain, E. Mayorga, M.G. Logsdon and J.E. Richey, A conceptual framework for modelling organic dynamics in large river systems, in: Fourth International Symposium on the Geochemistry of the Earth’s Surface, ed. S.H. Bottrell (University of Leeds, Leeds, 1996) pp. 323–326. Google Scholar
  26. [26]
    T.R. Moore and M. Dalva, J. Soil Sci. 44 (1993) 651–664. Google Scholar
  27. [27]
    J.P. Nieveen, C.M.J. Jacobs and A.F.G. Jacobs, Global Change Biol. 4 (1998) 823–850. CrossRefGoogle Scholar
  28. [28]
    E.A. Paul and F.E. Clark, Soil Microbiology and Biochemistry, 2nd edn (Academic Press, San Diego, Boston, New York, Tokyo, Toronto, 1989) pp. 157–166. Google Scholar
  29. [29]
    A. Refsgaard, J.C. Refsgaard and J. Høst-Madsen, A hydrological modeling system for joint analyses of regional ground water resources and local contaminant transport, in: Proceedings of the Interamerican Congress of Sanitary and Environmental Engineering, Argentina (1994). Google Scholar
  30. [30]
    R.L. Sass, F.M. Fisher, F.T. Turner and M.F. Jund, Global Biogeochem. Cycles 5 (1991) 335–350. Google Scholar
  31. [31]
    C.P. Schreader, W.R. Rouse, T.J. Griffis, L.D. Boudreau and P.D. Blanken, Global Biogeochem. Cycles 12 (1998) 729–740. CrossRefGoogle Scholar
  32. [32]
    R. Segers, Biogeochemistry 41 (1998) 23–51. CrossRefGoogle Scholar
  33. [33]
    R. Segers and P.A. Leffelaar, J. Geophys. Res. 106(D4) (2001) 3511–3528. CrossRefGoogle Scholar
  34. [34]
    R. Segers and P.A. Leffelaar, J. Geophys. Res. 106(D4) (2001) 3541–3558. CrossRefGoogle Scholar
  35. [35]
    R. Segers, C. Rappoldt and P.A. Leffelaar, J. Geophys. Res. 106(D4) (2001) 3529–3540. CrossRefGoogle Scholar
  36. [36]
    N.J. Shurpali, S.B. Verma, J. Kim and T.J. Arkebauer, J. Geophys. Res. 100 (1995) 14319–14326. CrossRefGoogle Scholar
  37. [37]
    W. Stumm and J.J. Morgan, Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters, 2nd edn (John Wiley & Sons, New York, 1981) pp. 418–503. Google Scholar
  38. [38]
    M. Styczen, M. Thorsen, A. Refsgaard, J.S. Christiansen and S. Hansen, Non-point pollution modeling at different scales and resolution based on MIKE SHE, in: Proceedings of 3rd DHI Software Conference, Helsingør, Denmark (1999). Google Scholar
  39. [39]
    G. Sun, H. Riekerk and N.B. Comerford, Journal of the American Water Resources Association 34(4) (1998) 843–854. Google Scholar
  40. [40]
    M. Thorsen, P.R. Jørgensen, G. Felding, O.H. Jacobsen, N.H. Spliid and J.C. Refsgaard, Journal of Environmental Quality 27 (1998) 1183–1193. Google Scholar
  41. [41]
    C.C. Trettin, B. Song, M.F. Jurgensen and C. Li, Existing soil carbon models do not apply to forested wetlands, Gen. Tech. Rep. SRS-46. Southern Research Station, Forest Service, Department of Agriculture, Asheville, NC, US (2001) 10 p. Google Scholar
  42. [42]
    D.W. Valentine, E.A. Holland and D.S. Schimel, J. Geophys. Res. 99 (1994) 1563–1571. CrossRefGoogle Scholar
  43. [43]
    J.M. Waddington and N.T. Roulet, Global Change Biol. 6 (2000) 87–97. CrossRefGoogle Scholar
  44. [44]
    B.P. Walter and M. Heimann, Global Biogeochem. Cycles 14(3) (2000) 745–765. CrossRefGoogle Scholar
  45. [45]
    B.P. Walter, M. Heimann and E. Matthews, J. Geophys. Res. 106(24) (2001) 34189–34206. CrossRefGoogle Scholar
  46. [46]
    B.P. Walter, M. Heimann and E. Matthews, J. Geophys. Res. 106(24) (2001) 34207–34219. CrossRefGoogle Scholar
  47. [47]
    R. Wassmann, M.X. Wang, X.J. Shangguan, X.L. Xie, R.X. Shen, Y.S. Wang, H. Papen, H. Rennenberg and W. Seiler, Geophys. Res. Letters 20 (1993) 2071–2074. Google Scholar
  48. [48]
    J.F. Weltzin, J. Pastor, C. Harth, S.D. Bridgham, K. Updegraff and C.T. Chapin, Ecology 81 (2000) 3464–3478. Google Scholar
  49. [49]
    K. Yagi and K. Manami, Soil Sci. Plant Nutr. 36 (1990) 599–610. Google Scholar
  50. [50]
    S.C. Zoltai and P.J. Martikainen, Estimated extent of forested peatlands and their role in the global carbon cycle, in: Forest Ecosystems, Forest Management and the Global Carbon Cycle, eds. M.J. Apps and D.T. Price, NATO Advanced Science Institutes Series, Vol. I40 (Springer Verlag, Heidelberg, 1996) pp. 47–58. Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Institute for the Study of Earth, Oceans, and SpaceUniversity of New HampshireDurhamUSA
  2. 2.USDAForest Service, Center for Forested Wetlands ResearchCharlestonUSA

Personalised recommendations