Advertisement

Journal of Engineering Mathematics

, Volume 111, Issue 1, pp 1–13 | Cite as

Convective and diffusive particle transport in channels of periodic cross-section: comparison with experiment

  • B. H. Bradshaw-Hajek
  • N. Islam
  • S. J. Miklavcic
  • L. R. White
Article

Abstract

This paper compares the results of a theoretical model with published experimental data investigating the potential use of a drift ratchet as a particle transport device. The drift ratchet of interest here involves the oscillation of a particle-laden fluid through a periodically shaped tube, combined with an exploitation of the Brownian motion of the small particles. Our theoretical results support the experimental evidence that, at these scales, the ratchet effect is not the predominant mechanism for facilitating particle transport. Rather, the tube geometry (but not orientation) and the form of the applied oscillating pressure gradient are the primary characteristics which determine the effectiveness of a device for particle transport. In particular, we find that transport is enhanced in a saw-tooth tube in comparison with a straight, cylindrical tube.

Keywords

Axisymmetric mass and fluid flow Brownian ratchets Convective–diffusive transport Microfluidic particle transport Stokes flow 

Notes

Acknowledgements

This work was supported by the Australian Research Council (Grant Number DP1096282). We are grateful to the anonymous referees whose comments helped to improve this paper.

References

  1. 1.
    Rousselet J, Salome L, Ajdari A, Prost J (1994) Directional motion of Brownian particles induced by a periodic asymmetric potential. Nature 370:446–448CrossRefGoogle Scholar
  2. 2.
    Flach S, Yevtushenko O, Zolotaryuk Y (2000) Directed current due to broken time-space symmetry. Phys Rev Lett 84:2358–2361CrossRefGoogle Scholar
  3. 3.
    Matthias S, Müller F (2003) Asymmetric pores in a silicon membrane acting as massively parallel Brownian ratchets. Nature 424:53–57CrossRefGoogle Scholar
  4. 4.
    Mathwig K, Müller f, Gösele U (2011) Particle transport in asymmetrically modulated pores. New J Phys 13:033038CrossRefGoogle Scholar
  5. 5.
    Verleger S, Grimm A, Kreuter C, Ming Tan H, van Kan JA, Erbe A, Scheer E, van der Maarel JRC (2012) A single-channel microparticle sieve based on Brownian ratchets. Lab Chip 12:1238–1241CrossRefGoogle Scholar
  6. 6.
    Bogunovic L, Eichhorn R, Regtmeier J, Anselmetti D, Reimann P (2012) Particle sorting by a structured microfluidic ratchet device with tunable selectivity: theory and experiment. Soft Matter 8:3900–3907CrossRefGoogle Scholar
  7. 7.
    Reimann P (2002) Brownian motors: noisy transport far from equilibrium. Phys Rep 361:57–265MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Hänggi P, Bartussek R (1996) Brownian rectifiers: how to convert Brownian motion into directed transport. In: Parisi J, Müller SC, Zimmermann W (eds) Nonlinear physics of complex systems—current status and future trends. Lecture Notes in Physics, vol 476. Springer, Berlin, pp 294–308Google Scholar
  9. 9.
    Astumian RD (1997) Thermodynamics and kinetics of a Brownian motor. Science 276:917–922CrossRefGoogle Scholar
  10. 10.
    Jülicher F, Ajdari A, Prost J (1997) Modeling molecular motors. Rev Mod Phys 69:1269–1281CrossRefGoogle Scholar
  11. 11.
    Cisne RLC Jr, Vasconcelos TF, Parteli EJR, Andrade JS Jr (2011) Particle transport in flow through a ratchet-like channel. Microfluid Nanofluid 10:543–550CrossRefGoogle Scholar
  12. 12.
    Schindler M, Talkner P, Kostur M, Hänggi P (2007) Accumulating particles at boundaries of a laminar flow. Physica A 385:46–58CrossRefGoogle Scholar
  13. 13.
    Bartussed R, Hänggi P, Kissner JG (1994) Periodically rocked thermal ratchets. Europhys Lett 28:459–464CrossRefGoogle Scholar
  14. 14.
    Kettner C, Reimann P, Hänggi P, Müller F (2000) Drift ratchet. Phys Rev E 61:312–323CrossRefGoogle Scholar
  15. 15.
    Makhnovskii YA, Zitserman VY, Antipov AE (2012) Directed transport of a Brownian particle in a periodically tapered tube. J Exp Theor Phys 142:603–620Google Scholar
  16. 16.
    Beltrame P, Makhoul M, Joelson M (2016) Deterministic particle transport in a ratchet flow. Phys Rev E 93:012208CrossRefGoogle Scholar
  17. 17.
    Herringer JW, Lester D, Dorrington GE, Rosengarten G, Mitchell JG (2017) Hydrodynamic drift ratchet scalability. AIChE J 63:2358–2366CrossRefGoogle Scholar
  18. 18.
    Islam N, Miklavcic SJ, Bradshaw-Hajek BH, White LR (2017) Convective and diffusive effects on particle transport in asymmetric periodic capillaries. PLoS ONE 12:e0183127CrossRefGoogle Scholar
  19. 19.
    Islam N, Bradshaw-Hajek BH, Miklavcic SJ, White LR (2015) The onset of recirculation flow in periodic capillaries: Geometric effects. Eur J Mech B 53:119–128MathSciNetCrossRefGoogle Scholar
  20. 20.
    Pozrikidis C (1992) Boundary integral and singularity methods for linearised viscous flow. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
  21. 21.
    Levich VG (1962) Physicochemical hydrodynamics. Pretence-Hall, Englewood CliffsGoogle Scholar
  22. 22.
    Antipov AE, Barzykin AV, Berezhkovskii AM, Makhnovskii YA, Zitserman VY, Aldoshin SM (2013) Effective diffusion coefficient of a Brownian particle in a periodically expanded conical tube. Phys Rev E 88:054101CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • B. H. Bradshaw-Hajek
    • 1
  • N. Islam
    • 1
    • 2
  • S. J. Miklavcic
    • 1
  • L. R. White
    • 1
  1. 1.Phenomics and Bioinformatics Research Centre, School of Information Technology and Mathematical SciencesUniversity of South AustraliaMawson LakesAustralia
  2. 2.Mathematics Discipline, Science, Engineering and Technology SchoolKhulna UniversityKhulnaBangladesh

Personalised recommendations