Journal of Engineering Mathematics

, Volume 100, Issue 1, pp 95–106 | Cite as

A finite-difference scheme for a model of magnetization dynamics with inertial effects

  • M. Moumni
  • M. Tilioua


We consider a mathematical model describing magnetization dynamics with inertial effects. The model consists of a modified form of the Landau–Lifshitz–Gilbert equation for the evolution of the magnetization vector in a rigid ferromagnet. The modification lies in the presence of an acceleration term describing inertia. A semi-implicit finite-difference scheme for the model is proposed, and a criterion of numerical stability is given. Some numerical experiments are conducted to show the performance of the scheme.


Ferromagnets Finite difference Inertial effects Magnetization dynamics Numerical stability 

Mathematics Subject Classification

78A25 35Q60 35B40 



We would like to thank the editor and referees for their constructive comments and suggestions. The research was supported by the PHC Volubilis program MA/14/301 “Elaboration et analyse de modèles asymptotiques en micro-magnétisme, magnéto-élasticité et électro-élasticité” with joint financial support from the French Ministry of Foreign Affairs and the Moroccan Ministry of Higher Education and Scientific Research.


  1. 1.
    Olive E, Lansac Y, Meyer M, Hayoun M, Wegrowe J-E (2015) Deviation from the Landau–Lifshitz–Gilbert equation in the inertial regime of the magnetization. J Appl Phys 117:213904ADSCrossRefGoogle Scholar
  2. 2.
    Ciornei MC, Rubi JM, Wegrowe J-E (2011) Magnetization dynamics in the inertial regime: nutation predicted at short time scales. Phys Rev B, 83: 020410 (R) 1–4Google Scholar
  3. 3.
    Wegrowe J-E, Ciornei MC (2012) Magnetization dynamics, gyromagnetic relation, and inertial effects. Am J Phys 80:607ADSCrossRefGoogle Scholar
  4. 4.
    Cerimele MM, Pistella F, Valente V (2001) A numerical study of a nonlinear system arising in modeling of ferromagnets. In: Proceedings of the 3rd world congress of nonlinear analysts, Part 5, Catania, 2000. Nonlinear Anal 47(5):3357–3367Google Scholar
  5. 5.
    Labbé S (2005) Fast computation for large magnetostatic systems adapted for micromagnetism. SIAM J Sci Comput 26(6):2160–2175MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Kružík M, Prohl A (2006) Recent developments in the modeling, analysis, and numerics of ferromagnetism. SIAM Rev 48:439–483ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Pistella F, Valente V (1999) Numerical stability of a discrete model in the dynamics of ferromagnetic bodies. Numer Methods Partial Differ Equ 15(5):544–557MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Alouges F, Jaisson P (2006) Convergence of a finite element discretization for the Landau–Lifshitz equations in micromagnetism. Math Models Methods Appl Sci 16:299–316MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Alouges F (2008) A new finite element scheme for Landau–Lifchitz equations. Discret Contin Dyn Syst Ser S 1(2):187–196MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bartels S, Ko J, Prohl A (2008) Numerical approximation of an explicit approximation scheme for the Landau–Lifshitz–Gilbert equation. Math Comp 77:773–788ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Bartels S, Prohl A (2006) Convergence of an implicit finite element method for the Landau–Lifshitz–Gilbert equation. SIAM J Numer Anal 44:1405–1419MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Baňas L, Bartels S, Prohl A (2008) A convergent implicit finite element discretization of the Maxwell–Landau–Lifshitz–Gilbert equation. SIAM J Numer Anal 46(3):1399–1422MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Baňas L, Page M, Praetorius D (2012) A convergent linear finite element scheme for the Maxwell–Landau–Lifshitz–Gilbert equations. Electron Trans Numer Anal 44(2015):250–270Google Scholar
  14. 14.
    Cimrák I (2007) Error analysis of a numerical scheme for 3D Maxwell–Landau–Lifshitz system. Math Methods Appl Sci 30(14):1667–1683MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Le K-N, Tran T (2013) A convergent finite element approximation for the quasi-static Maxwell–Landau–Lifshitz–Gilbert equations. Comput Math Appl 66(8):1389–1402MathSciNetCrossRefGoogle Scholar
  16. 16.
    Le K-N, Tran T (2013) A finite element approximation for the quasi-static Maxwell–Landau-Lifshitz–Gilbert equations. ANZIAM J 54(CTAC2012):C681–C698MathSciNetCrossRefGoogle Scholar
  17. 17.
    Cerimele MM, Pistella F, Valente V (2008) Numerical study of an evolutive model for magnetostrictive materials. Math Comput Simul 77:22–33MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Hadda M, Tilioua M (2014) On magnetization dynamics with inertial effect. J Eng Math 88:197–206MathSciNetCrossRefGoogle Scholar
  19. 19.
    Fielder J, Schrefl T (2000) Micromagnetic modelling: the current state of the art. J Phys D 33:R135ADSCrossRefGoogle Scholar
  20. 20.
    Wang XP, García-Cervera CJ, Weinan E (2001) A Gauss–Seidel projection method for micromagnetics simulations. J Comp Phys 171:357–372ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Romeo A, Finocchio G, Carpentieri M, Torres L, Consolo G, Azzerboni B (2008) A numerical solution of the magnetization reversal modeling in a permalloy thin film using fifth order Runge–Kutta method with adaptive step size control. Phys B: Condens Matter 403(2):464–468ADSCrossRefGoogle Scholar
  22. 22.
    Baňas L (2005) Numerical methods for the Landau-Lifshitz-Gilbert equation. In: Li L, Vulkov L, Wasniewski J (eds) Numerical analysis and its applications. Lecture Notes in Computer Science, Springer, BerlinGoogle Scholar
  23. 23.
    Monk PB, Vacus O (2001) Accurate discretization of a non-linear micromagnetic problem. Comput Methods Appl Mech Eng 190(40–41):5243–5269ADSMathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Cimrák I (2008) A survey on the numerics and computations for the Landau–Lifshitz equation of micromagnetism. Arch Comput Methods Eng 15(3):277–309MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Podio-Guidugli P (2001) On dissipation mechanisms in micromagnetics. Eur Phys J B 19:417–424ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Université de La RochelleMIA CNRS EA 3165La RochelleFrance
  2. 2.FST Errachidia, M2I Laboratory, MAMCS GroupBoutalamineMorocco

Personalised recommendations