Journal of Engineering Mathematics

, Volume 86, Issue 1, pp 125–138 | Cite as

Semi-analytical solution of transient plane waves transmitted through a transversely isotropic poroelastic plate immersed in fluid

  • Vu-Hieu Nguyen
  • Salah Naili


This paper provides a semi-analytical time-domain solution of the plane wave field propagating in an arbitrary direction through a transversely isotropic poroelastic plate immersed in fluid. Biot’s theory is employed for modeling the anisotropic porous medium. The proposed formulation could be used as an efficient tool for studying the influence of a material’s anisotropy on the behavior of a plane wave propagating in an arbitrary direction. Some numerical results of an in vitro ultrasonic through-transmission test on cancellous bone samples will be presented.


Anisotropic poroelasticity Biot’s model Cancellous bone Plane wave Semi-analytical solution 


  1. 1.
    Coussy O (2004) Poromechanics. Wiley, New YorkGoogle Scholar
  2. 2.
    Mavko G, Mukerji T, Dvorkin J (2009) The rock physics handbook: tools for seismic analysis in porous media. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  3. 3.
    Allard J, Atalla N (2009) Propagation of sound in porous media: modelling sound absorbing materials. Wiley, New YorkCrossRefGoogle Scholar
  4. 4.
    Laugier P, Haiat GE (2011) Bone quantitative ultrasound. Springer, DordrechtCrossRefGoogle Scholar
  5. 5.
    François M, Geymonat G, Berthaud Y (1998) Determination of the symmetries of an experimentally determined stiffness tensor: application to acoustic measurements. Int J Solids Struct 35(31–32):4091–4106CrossRefMATHGoogle Scholar
  6. 6.
    Diaz J, Ezziani A (2010) Analytical solution for waves propagation in heterogeneous acoustic/porous media. Part I: the 2D case. Commun Comput Phys 7:171–194MathSciNetGoogle Scholar
  7. 7.
    Degrande G, De Roeck G, Van Den Broeck P, Smeulders D (1998) Wave propagtion in layered dry, saturated and unsaturated poroelastic media. Int J Solids Struct 35(34–35):4753–4778CrossRefMATHGoogle Scholar
  8. 8.
    Lefeuve-Mesgouez G, Mesgouez A, Chiavassa G, Lombard B (2012) Semi-analytical and numerical methods for computing transient waves in 2D acoustic/poroelastic stratified media. Wave Motion 49(7):667–680CrossRefMathSciNetGoogle Scholar
  9. 9.
    Gautier G, Kelders L, Groby J-P, Dazel O, De Ryck L, Leclaire P (2011) Propagation of acoustic waves in a one-dimensional macroscopically inhomogeneous poroelastic material. J Acoust Soc Am 130(3):1390–1398Google Scholar
  10. 10.
    Nguyen V-H, Naili S, Sansalone V (2010) Simulation of ultrasonic wave propagation in anisotropic cancellous bone immersed in fluid. Wave Motion 47(2):117–129Google Scholar
  11. 11.
    Morency C, Tromp J (2008) Semi-analytical and numerical methods for computing transient waves in 2D acoustic/poroelastic stratified media. Geophys J Int 175(1):301–345ADSCrossRefGoogle Scholar
  12. 12.
    Sidler R, Carcione JM, Holliger K (2010) Simulation of surface waves in porous media. Geophys J Int 183(2):820–832ADSCrossRefGoogle Scholar
  13. 13.
    Schanz M (2009) Poroelastodynamics: linear models, analytical solutions, and numerical methods. Appl Mech Rev 62(3):030803ADSCrossRefGoogle Scholar
  14. 14.
    Carcione J, Morency C, Santos JE (2010) Computational poroelasticity: a review. Geophysics 75(5):75A299–75A243CrossRefGoogle Scholar
  15. 15.
    Biot M (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J Acoust Soc Am 28(2):179–191ADSCrossRefMathSciNetGoogle Scholar
  16. 16.
    Thompson M, Willis J (1991) A reformation of the equations of anisotropic poroelasticity. J Appl Mech 58:612–616CrossRefMATHGoogle Scholar
  17. 17.
    Cowin S (2003) A recasting of anisotropic poroelasticity in matrices of tensor components. Transp Porous Media 50(1):35–56CrossRefMathSciNetGoogle Scholar
  18. 18.
    Schanz M, Antes H (1997) Application of ‘Operational Quadrature Methods’ in time domain boundary element methods. Meccanica 32:179–186CrossRefMATHGoogle Scholar
  19. 19.
    Hughes E, Leighton T, White P, Petley G (2007) Investigation of an anisotropic tortuosity in a Biot model of ultrasonic propagation in cancellous bone. J Acoust Soc Am 121(1):568–574ADSCrossRefGoogle Scholar
  20. 20.
    Lee K, Hughes E, Humphrey V, Leighton T, Choi M (2007) Empirical angle-dependent Biot and MBA models for acoustic anisotropy in cancellous bone. Phys Med Biol 52(1):59–73CrossRefGoogle Scholar
  21. 21.
    Mizuno K, Matsukawa M, Otani T, Takada M, Mano I, Tsujimoto T (2008) Effects of structural anisotropy of cancellous bone on speed of ultrasonic fast waves in the bovine femur. IEEE Trans Ultrason Ferroelectr Freq Control 55(7):1480–1487CrossRefGoogle Scholar
  22. 22.
    Aygün H, Attenborough K, Postema M, Lauriks W, Langton CM (2009) Predictions of angle dependent tortuosity and elasticity effects on sound propagation in cancellous bone. J Acoust Soc Am 126(6):3286–3290ADSCrossRefGoogle Scholar
  23. 23.
    Nguyen V-H, Naili S, Sansalone V (2010) A closed-form solution for in vitro transient ultrasonic wave propagation in cancellous bone. Mech Res Commun 37(4):377–383Google Scholar
  24. 24.
    Cardoso L, Cowin S (2011) Fabric dependence of quasi-waves in anisotropic porous media. J Acoust Soc Am 129(5):3302–3316ADSCrossRefGoogle Scholar
  25. 25.
    Gibson L (1985) The mechanical behaviour of cancellous bone. J Biomech 18(5):317–328CrossRefGoogle Scholar
  26. 26.
    Williams J (1992) Ultrasonic wave propagation in cancellous and cortical bone: prediction of some experimental results by Biot’s theory. J Acoust Soc Am 91(2):1106–1112ADSCrossRefGoogle Scholar
  27. 27.
    Yang G, Kabel J, van Rietbergen B, Odgaard A, Huiskes R, Cowin SC (1999) The anisotropic Hooke’s law for cancellous bone and wood. J Elasticity 53:125–146CrossRefMATHGoogle Scholar
  28. 28.
    Hellmich C, Ulm F-J (2005) Microporodynamics of bones: prediction of the “Frenkel–Biot slow compressional wave”. J Eng Mech 131(9):918–927CrossRefGoogle Scholar
  29. 29.
    Johnson D, Koplik J, Dashen R (1987) Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J Fluid Mech 176:379–402ADSCrossRefMATHGoogle Scholar
  30. 30.
    Attenborough K, Shin H-C, Qin Q, Fagan MJ, Langton CM (2005) Measurements of tortuosity in stereo-lithographical bone replicas using audio-frequency pulses. J Acoust Soc Am 118:2779–2782ADSCrossRefGoogle Scholar
  31. 31.
    Fellah Z, Chapelon J, Berger S, Lauriks W, Depollier C (2004) Ultrasonic wave propagation in human cancellous bone: application of Biot theory. J Acoust Soc Am 116(1):61–73ADSCrossRefGoogle Scholar
  32. 32.
    Hosokawa A (2005) Simulation of ultrasound propagation through bovine cancellous bone using finite-difference time-domain methods. J Acoust Soc Am 118(3):1782–1789ADSCrossRefMathSciNetGoogle Scholar
  33. 33.
    Nguyen V-H, Naili S (2012) Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method. Int J Numer Methods Biomed Eng 28(8):861–876CrossRefMathSciNetGoogle Scholar
  34. 34.
    Cheng A (1997) Material coefficients of anisotropic poroelasticity. Int J Rock Mech Min Sci 34(2):199–205CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRSUniversité Paris-EstCréteil CedexFrance

Personalised recommendations