Journal of Engineering Mathematics

, Volume 83, Issue 1, pp 185–202 | Cite as

Multiscale modeling of beam and plates using customized second-generation wavelets

  • S. M. Quraishi
  • K. Sandeep


We have designed bicubic Hermite-type finite-element wavelets that decouple the multiresolution stiffness matrix obtained from the discretization of the biharmonic equation. The scale decoupling basis makes the stiffness matrix block diagonal and hence eliminates the coupling between scales. The scale-decoupled system leads to an incremental procedure for systematic enrichment of the solution without the need for costly remeshing of the whole domain and recalculation of the solution. The solution is obtained by injection of finer-scale wavelets at locations with high detail coefficients. We conducted some numerical experiments to demonstrate the customized wavelet-based finite-element method for the problem of bending of Euler’s beam and Kirchhoff’s plates; we also demonstrate the role of wavelets in resolving localized phenomena.


Biharmonic equation Finite-element wavelets Galerkin method Scale-decoupling conditions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mallat S (1988) A theory for multiresolution signal decomposition: the wavelet representation. Commun Pure Appl Math 41: 674–693Google Scholar
  2. 2.
    Yserentant H (1986) On the multilevel splitting of finite element spaces. Numer Math 49: 379–412MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Christon M, Roach D (2000) The numerical performance of wavelets for PDEs: the multi-scale finite element. Comput Mech 25: 230–244MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Krysl P, Grinspun E, Schroeder P (2002) Natural hierarchical refinement for finite element methods. Int J Numer Meth Eng 56(8): 1109–1124CrossRefGoogle Scholar
  5. 5.
    Krysl P, Trivedi A, Zhu B (2004) Object-oriented hierarchical mesh refinement with CHARMS. Int J Numer Meth Eng 60(8): 1401–1424CrossRefMATHGoogle Scholar
  6. 6.
    Hanisch MR (1993) Multigrid preconditioning for the biharmonic Dirichlet problem. SIAM J Numer Anal 30: 184–214MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Aksoylu B, Bond S, Holst M (2003) An Odyssey into local refinement and multilevel preconditioning III: Implementation and numerical experiments. SIAM J Sci Comput 25: 478–498MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Glowinski R, Lawton W, Ravachol M, Tenenbaum E (1990) Wavelet solutions of linear and nonlinear elliptic, parabolic and hyperbolic problems in one space dimension. In: Glowinski R, Lichnewsky A (eds) Computing methods in applied sciences and engineering. SIAM, Philadelphia, pp 55–120Google Scholar
  9. 9.
    Glowinski R, Pan T, Raymond J, Wells O, Zhou X (1992) Wavelet and finite element solutions for the Dirichlet problem. Technical report Rice University, HoustonGoogle Scholar
  10. 10.
    Dahlke S, Weinreich I (1993) Wavelet-Galerkin methods: an adapted biorthogonal wavelet basis. Constr Approx 9: 237–262MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Amaratunga K, Williams JR, Qian S, Weiss J (1994) Wavelet-Galerkin solutions for one dimensional partial differential equations. Int J Numer Meth Eng 37: 2703–2716MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Ko J, Kurdila A, Pilant M (1995) A class of finite element methods based on orthonormal, compactly supported wavelets. Comput Mech 16: 235–244MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Ko J, Kurdila A, Pilant MS (1997) Triangular wavelet based finite elements via multivalued scaling equations. Comput Methods Appl Mech Eng 146(1-2): 1–17MathSciNetADSCrossRefMATHGoogle Scholar
  14. 14.
    Canuto C, Tabacco A, Urban K (1999) The wavelet element method, Part 1: Construction and analysis. Appl Comput Harmon Anal 6: 1–52MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Canuto C, Tobacco A, Urban K (2000) The wavelet element method, Part 2: Realization and additional features in 2D and 3D. Appl Comput Harmon Anal 8(2): 123–165MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Venini P, Morana P (2001) An adaptive wavelet-Galerkin method for an elastic-plastic-damage constitutive model: one dimensional problem. Comput Methods Appl Mech Eng 190(42): 5619–5638ADSCrossRefMATHGoogle Scholar
  17. 17.
    Ma J, Xue J, Yang S, He Z (2003) A study of the construction and application of a Daubechies wavelet-based beam element. Finite Elem Anal Des 39: 965–975CrossRefGoogle Scholar
  18. 18.
    Pan G, Wang K, Gilbert B (2003) On multiwavelets based finite element method. IEEE Trans Microwave Theory Tech 51: 148–155ADSCrossRefGoogle Scholar
  19. 19.
    Chen X, Yang S, Ma J, He Z (2004) The construction of wavelet-finite element and its application. Finite Elem Anal Des 40: 541–554CrossRefGoogle Scholar
  20. 20.
    Han J, Ren W, Huang Y (2005) A multivariable wavelet-based finite element method and its application to thick plates. Finite Elem Anal Des 41: 821–833CrossRefGoogle Scholar
  21. 21.
    Han J, Ren W, Huang Y (2006) A spline wavelet finite-element method in structural mechanics. Int J Numer Methods Eng 66: 166–190CrossRefMATHGoogle Scholar
  22. 22.
    Castro LS, Barbosa A (2006) Implementation of an hybrid-mixed stress model based on the use of wavelets. Computers and Structures 84: 718–731CrossRefGoogle Scholar
  23. 23.
    Diaz L, Martin M, Vampa V (2009) Daubechies wavelet beam and plates finite elements. Finite Elem Anal Des 45: 200–209MathSciNetCrossRefGoogle Scholar
  24. 24.
    Sweldens W (1996) The lifting scheme: a custom-design construction ofbiorthogonal wavelets. Appl Comput Harmon Anal 3:186–200Google Scholar
  25. 25.
    Sweldens W (1997) The lifting scheme: a construction of second generation wavelets. SIAM J Math Anal 29: 511–546MathSciNetCrossRefGoogle Scholar
  26. 26.
    Carnicer J, Dahmen W, Pena J (1996) Local decompositions of refinable spaces. Appl Comput Harmon Anal 3: 125–153MathSciNetCrossRefGoogle Scholar
  27. 27.
    Heedene SD, Amaratunga K, Castrillon-Candas J (2005) Generalized hierarchical bases: a Wavelet-Ritz-Galerkin framework for Lagrangian FEM. Eng Comput: Int J Comput Aided Eng Software 22: 15–37CrossRefMATHGoogle Scholar
  28. 28.
    Amaratunga K, Sudarshan R (2006) Multiresolution modeling with operator-customized wavelets derived from finite elements. Comput Methods Appl Mech Eng 195: 2509–2532MathSciNetADSCrossRefMATHGoogle Scholar
  29. 29.
    Sudarshan R, Amaratunga K, Gratsch T (2006) A combined approach for goal-oriented error estimation and adaptivity using operator-customized finite element wavelets. Int J Numer Meth Eng 66: 1002–1035MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    He Y, Chen X, Xiang J, He Z (2007) Adaptive multiresolution finite element method based on second generation wavelets. Finite Elem Anal Des 43: 566–579CrossRefGoogle Scholar
  31. 31.
    Quraishi S, Gupta R, Sandeep K (2009) Adaptive wavelet Galerkin solution of some elastostatics problems on irregularly spaced nodes. Bentham Open Numer Methods 1: 20–25ADSCrossRefGoogle Scholar
  32. 32.
    Quraishi S, Sandeep K (2011) A second generation wavelet based finite elements on triangulations. Comput Mech 48(2): 163–174MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Latto A, Resnikoff H, Tenenbaum E (1991) The evaluation of connection coefficients of compactly supported wavelets. Technical report Aware Inc., AD910708Google Scholar
  34. 34.
    Bogner F, Fox R, Schmit L (1965) The generation of interelement-compatible displacement stifness and mass matrices by the use of interpolation formulae. Proceedings of the First Conference on Matrix Methods in Structural Mechanics, volume AFFDITR-66-80. Air Force Flight Dynamics Laboratory, Wright Patterson Air Force Base, pp 397–443Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2013

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of Technology, B.H.U.VaranasiIndia

Personalised recommendations