Skip to main content
Log in

Multiscale modeling of beam and plates using customized second-generation wavelets

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

We have designed bicubic Hermite-type finite-element wavelets that decouple the multiresolution stiffness matrix obtained from the discretization of the biharmonic equation. The scale decoupling basis makes the stiffness matrix block diagonal and hence eliminates the coupling between scales. The scale-decoupled system leads to an incremental procedure for systematic enrichment of the solution without the need for costly remeshing of the whole domain and recalculation of the solution. The solution is obtained by injection of finer-scale wavelets at locations with high detail coefficients. We conducted some numerical experiments to demonstrate the customized wavelet-based finite-element method for the problem of bending of Euler’s beam and Kirchhoff’s plates; we also demonstrate the role of wavelets in resolving localized phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mallat S (1988) A theory for multiresolution signal decomposition: the wavelet representation. Commun Pure Appl Math 41: 674–693

    Google Scholar 

  2. Yserentant H (1986) On the multilevel splitting of finite element spaces. Numer Math 49: 379–412

    Article  MathSciNet  MATH  Google Scholar 

  3. Christon M, Roach D (2000) The numerical performance of wavelets for PDEs: the multi-scale finite element. Comput Mech 25: 230–244

    Article  MathSciNet  MATH  Google Scholar 

  4. Krysl P, Grinspun E, Schroeder P (2002) Natural hierarchical refinement for finite element methods. Int J Numer Meth Eng 56(8): 1109–1124

    Article  Google Scholar 

  5. Krysl P, Trivedi A, Zhu B (2004) Object-oriented hierarchical mesh refinement with CHARMS. Int J Numer Meth Eng 60(8): 1401–1424

    Article  MATH  Google Scholar 

  6. Hanisch MR (1993) Multigrid preconditioning for the biharmonic Dirichlet problem. SIAM J Numer Anal 30: 184–214

    Article  MathSciNet  MATH  Google Scholar 

  7. Aksoylu B, Bond S, Holst M (2003) An Odyssey into local refinement and multilevel preconditioning III: Implementation and numerical experiments. SIAM J Sci Comput 25: 478–498

    Article  MathSciNet  MATH  Google Scholar 

  8. Glowinski R, Lawton W, Ravachol M, Tenenbaum E (1990) Wavelet solutions of linear and nonlinear elliptic, parabolic and hyperbolic problems in one space dimension. In: Glowinski R, Lichnewsky A (eds) Computing methods in applied sciences and engineering. SIAM, Philadelphia, pp 55–120

  9. Glowinski R, Pan T, Raymond J, Wells O, Zhou X (1992) Wavelet and finite element solutions for the Dirichlet problem. Technical report Rice University, Houston

  10. Dahlke S, Weinreich I (1993) Wavelet-Galerkin methods: an adapted biorthogonal wavelet basis. Constr Approx 9: 237–262

    Article  MathSciNet  MATH  Google Scholar 

  11. Amaratunga K, Williams JR, Qian S, Weiss J (1994) Wavelet-Galerkin solutions for one dimensional partial differential equations. Int J Numer Meth Eng 37: 2703–2716

    Article  MathSciNet  MATH  Google Scholar 

  12. Ko J, Kurdila A, Pilant M (1995) A class of finite element methods based on orthonormal, compactly supported wavelets. Comput Mech 16: 235–244

    Article  MathSciNet  MATH  Google Scholar 

  13. Ko J, Kurdila A, Pilant MS (1997) Triangular wavelet based finite elements via multivalued scaling equations. Comput Methods Appl Mech Eng 146(1-2): 1–17

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Canuto C, Tabacco A, Urban K (1999) The wavelet element method, Part 1: Construction and analysis. Appl Comput Harmon Anal 6: 1–52

    Article  MathSciNet  MATH  Google Scholar 

  15. Canuto C, Tobacco A, Urban K (2000) The wavelet element method, Part 2: Realization and additional features in 2D and 3D. Appl Comput Harmon Anal 8(2): 123–165

    Article  MathSciNet  MATH  Google Scholar 

  16. Venini P, Morana P (2001) An adaptive wavelet-Galerkin method for an elastic-plastic-damage constitutive model: one dimensional problem. Comput Methods Appl Mech Eng 190(42): 5619–5638

    Article  ADS  MATH  Google Scholar 

  17. Ma J, Xue J, Yang S, He Z (2003) A study of the construction and application of a Daubechies wavelet-based beam element. Finite Elem Anal Des 39: 965–975

    Article  Google Scholar 

  18. Pan G, Wang K, Gilbert B (2003) On multiwavelets based finite element method. IEEE Trans Microwave Theory Tech 51: 148–155

    Article  ADS  Google Scholar 

  19. Chen X, Yang S, Ma J, He Z (2004) The construction of wavelet-finite element and its application. Finite Elem Anal Des 40: 541–554

    Article  Google Scholar 

  20. Han J, Ren W, Huang Y (2005) A multivariable wavelet-based finite element method and its application to thick plates. Finite Elem Anal Des 41: 821–833

    Article  Google Scholar 

  21. Han J, Ren W, Huang Y (2006) A spline wavelet finite-element method in structural mechanics. Int J Numer Methods Eng 66: 166–190

    Article  MATH  Google Scholar 

  22. Castro LS, Barbosa A (2006) Implementation of an hybrid-mixed stress model based on the use of wavelets. Computers and Structures 84: 718–731

    Article  Google Scholar 

  23. Diaz L, Martin M, Vampa V (2009) Daubechies wavelet beam and plates finite elements. Finite Elem Anal Des 45: 200–209

    Article  MathSciNet  Google Scholar 

  24. Sweldens W (1996) The lifting scheme: a custom-design construction ofbiorthogonal wavelets. Appl Comput Harmon Anal 3:186–200

    Google Scholar 

  25. Sweldens W (1997) The lifting scheme: a construction of second generation wavelets. SIAM J Math Anal 29: 511–546

    Article  MathSciNet  Google Scholar 

  26. Carnicer J, Dahmen W, Pena J (1996) Local decompositions of refinable spaces. Appl Comput Harmon Anal 3: 125–153

    Article  MathSciNet  Google Scholar 

  27. Heedene SD, Amaratunga K, Castrillon-Candas J (2005) Generalized hierarchical bases: a Wavelet-Ritz-Galerkin framework for Lagrangian FEM. Eng Comput: Int J Comput Aided Eng Software 22: 15–37

    Article  MATH  Google Scholar 

  28. Amaratunga K, Sudarshan R (2006) Multiresolution modeling with operator-customized wavelets derived from finite elements. Comput Methods Appl Mech Eng 195: 2509–2532

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Sudarshan R, Amaratunga K, Gratsch T (2006) A combined approach for goal-oriented error estimation and adaptivity using operator-customized finite element wavelets. Int J Numer Meth Eng 66: 1002–1035

    Article  MathSciNet  MATH  Google Scholar 

  30. He Y, Chen X, Xiang J, He Z (2007) Adaptive multiresolution finite element method based on second generation wavelets. Finite Elem Anal Des 43: 566–579

    Article  Google Scholar 

  31. Quraishi S, Gupta R, Sandeep K (2009) Adaptive wavelet Galerkin solution of some elastostatics problems on irregularly spaced nodes. Bentham Open Numer Methods 1: 20–25

    Article  ADS  Google Scholar 

  32. Quraishi S, Sandeep K (2011) A second generation wavelet based finite elements on triangulations. Comput Mech 48(2): 163–174

    Article  MathSciNet  MATH  Google Scholar 

  33. Latto A, Resnikoff H, Tenenbaum E (1991) The evaluation of connection coefficients of compactly supported wavelets. Technical report Aware Inc., AD910708

  34. Bogner F, Fox R, Schmit L (1965) The generation of interelement-compatible displacement stifness and mass matrices by the use of interpolation formulae. Proceedings of the First Conference on Matrix Methods in Structural Mechanics, volume AFFDITR-66-80. Air Force Flight Dynamics Laboratory, Wright Patterson Air Force Base, pp 397–443

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sandeep.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quraishi, S.M., Sandeep, K. Multiscale modeling of beam and plates using customized second-generation wavelets. J Eng Math 83, 185–202 (2013). https://doi.org/10.1007/s10665-012-9579-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-012-9579-4

Keywords

Navigation