Journal of Engineering Mathematics

, Volume 76, Issue 1, pp 181–193 | Cite as

Thermal performance analysis of arbitrary-profile fins with non-fourier heat conduction behavior

  • Keivan Bamdad
  • Aziz Azimi
  • Hossein Ahmadikia


The thermal performance of variable cross-section fins is considered using the Maxwell–Cattaneo–Vernotte (MCV) heat conduction model. Four different fins, namely rectangular, triangular, convex, and concave fins, with a periodic thermal condition are examined. The governing equations are hyperbolic and are solved numerically using an implicit finite difference method. In the MCV model, the thermal wave propagates with a finite speed, and hence sharp discontinuities appear in the temperature profiles. In this study, temperature profiles at various times, heat transfer rates, and thermal efficiencies of Fourier and non-Fourier fins are presented. In addition, the effect of relaxation time is considered. The results show that the effects of cross-sectional area and relaxation time are considerable on the thermal performance of various non-Fourier fins. To validate our findings, the results for non-Fourier fins with constant cross-sectional area obtained from this study are compared to those of other numerical solutions. This comparison confirms the correctness of the current results.


Extended surfaces Finite difference method Maxwell–Cattaneo–Vernotte wave model Periodic thermal conditions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maxwell JC (1867) On the dynamic theory of gases. Phil Trans R Soc Lond 157: 49–88CrossRefGoogle Scholar
  2. 2.
    Cattaneo C (1958) A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Comp Rend 247: 431–433MathSciNetGoogle Scholar
  3. 3.
    Vernotte P (1958) Les paradoxes de la theorie continue de l’equation de la chaleur. Comp Rend 246: 3154–3155MathSciNetGoogle Scholar
  4. 4.
    Tzou DY (1995) A unified field approach for heat conduction from marcro- to micro-scales. J Heat Trans 117: 8–16CrossRefGoogle Scholar
  5. 5.
    Compte A, Metzler R (1997) The generalized Cattaneo equation for the description of anomalous transport processes. J Phys A Math Gen 30: 7277–7289MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Ghazizadeh HR, Maerefat M, Azimi A (2010) Explicit and implicit finite difference schemes for fractional Cattaneo equation. J Comput Phys 229: 7042–7057MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    Peshkov V (1944) Second sound in helium II. J Phys (Moscow) 8: 381Google Scholar
  8. 8.
    Narayanamurti V, Dynes RC (1972) Observation of second sound in bismuth. Phys Rev Lett 28: 1461–1465ADSCrossRefGoogle Scholar
  9. 9.
    Jackson HE, Walker CT (1971) Thermal conductivity, second sound, and phonon–phonon interactions in NaF. Phys Rev B 3: 1428–1439ADSCrossRefGoogle Scholar
  10. 10.
    Kaminski W (1990) Hyperbolic heat conduction for materials with nonhomogeneous inner structure. J Heat Trans 112: 555–560CrossRefGoogle Scholar
  11. 11.
    Roetzel W, Putra N, Das SK (2003) Experiment and analysis for non-Fourier conduction in materials with non-homogeneous inner structure. Int J Therm Sci 42: 541–552CrossRefGoogle Scholar
  12. 12.
    Mitra K, Kumar S, Vedavarz A, Moallemi MK (1995) Experimental evidence of hyperbolic heat conduction in processed meat. J Heat Trans 117: 568–573CrossRefGoogle Scholar
  13. 13.
    Tang DW, Araki N (1996) Analytical solution of non-Fourier temperature response in a finite medium under laser pulse heating. Int J Heat Mass Trans 31: 359–363ADSCrossRefGoogle Scholar
  14. 14.
    Eastman JA, Choi SUS, Li S et al (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78: 718–720ADSCrossRefGoogle Scholar
  15. 15.
    Fang XQ, Hu C (2007) Thermal waves scattering by a subsurface sphere in a semi-infinite exponentially graded material using non-Fourier’s model. Thermo Acta 453: 128–135CrossRefGoogle Scholar
  16. 16.
    Espinosa-Paredes G, Espinosa-Martínez E-G (2009) Fuel rod model based on Non-Fourier heat conduction equation. Ann Nucl Energy 36: 680–693CrossRefGoogle Scholar
  17. 17.
    Moosaie A (2008) A non-Fourier heat conduction in a finite medium with insulated boundaries and arbitrary initial conditions. Int Commun Heat Mass Transf 35: 103–111CrossRefGoogle Scholar
  18. 18.
    Moosaie A (2008) Non-Fourier heat conduction in a finite medium subjected to arbitrary non-periodic surface disturbance. Int Commun Heat Mass Transf 35: 376–383CrossRefGoogle Scholar
  19. 19.
    Moosaie A (2007) Non-Fourier heat conduction in a finite medium subjected to arbitrary periodic surface disturbance. Int Commun Heat Mass Transf 34: 996–1002CrossRefGoogle Scholar
  20. 20.
    Xu YS, Guo ZY (1995) Heat wave phenomena in IC chips. Int J Heat Trans 38: 2919–2922CrossRefGoogle Scholar
  21. 21.
    Vick B, Ozisik MN (1983) Growth and decay of a thermal pulse predicted by the hyperbolic heat conduction equation. J Heat Trans 105: 902–907CrossRefGoogle Scholar
  22. 22.
    Yuen WW, Lee SC (1989) Non-Fourier heat conduction in a semi-infinite solid subjected to oscillatory surface thermal disturbances. J Heat Trans 111: 178–181CrossRefGoogle Scholar
  23. 23.
    Lin JY (1998) The non-Fourier effect on the fin performance under periodic thermal conditions. Int J Appl Math Model 22: 629–640CrossRefGoogle Scholar
  24. 24.
    Yang CV (2005) Estimation of the periodic thermal conditions on the non-Fourier fin problem. Int J Heat Mass Trans 48: 3506–3515MATHCrossRefGoogle Scholar
  25. 25.
    Huang CH, Wu HH (2006) An iterative regularization method in estimating the base temperature for non-Fourier fins. Int J Heat Mass Trans 49: 4893–4902MATHCrossRefGoogle Scholar
  26. 26.
    Bamdad K, Azimi A, Ahmadikia H (2010) Numerical simulation of one-dimensional hyperbolic heat conduction equation in longitudinal fins with different profiles. Paper presented at the 10th conference on engineering systems design and analysis, Istanbul, Turkey, 12–14 July 2010Google Scholar
  27. 27.
    Kraus AD, Aziz A, Welty J (2001) Extended surface heat transfer. Wiley, New YorkGoogle Scholar
  28. 28.
    Tannehill JC, Anderson DA, Pletcher RH (1997) Computational fluid mechanics and heat transfer. McGraw Hill Book Company, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Takestan BranchIslamic Azad UniversityTakestanIran
  2. 2.Department of Mechanical Engineering, Faculty of Engineering, Ahvaz BranchIslamic Azad UniversityAhvazIran
  3. 3.Department of Mechanical EngineeringIsfahan UniversityIsfahanIran

Personalised recommendations