Skip to main content
Log in

Existence and uniqueness of the traveling front in premixed combustion of porous media

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

We study a mathematical model of combustion processes in an inert porous media filled with a combustible gaseous mixture. We focus on the phenomenon of a combustion wave driven by a local pressure elevation. In this article, we are concerned with subsonic pressure-driven flames and with the case of a quadratic dependence of the friction force on the velocity of the gaseous mixture. After a suitable non-dimensionalization, the resulting mathematical model includes three nonlinear ordinary differential equations (ODEs). The system contains an unknown parameter V that represents the traveling wave speed. The existence of the traveling wave is proven in this study. It means that the parameter V can be chosen so that the corresponding phase trajectory satisfies the boundary conditions. Moreover, under reasonable assumptions about the monotonicity of the flame front, we prove the uniqueness of the pressure-driven wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Babkin VS (1993) Filtration combustion of gases. Present state of affairs and prospects. Pure Appl Chem 64: 335–344

    Article  Google Scholar 

  2. Gol’dshtein V, Shreiber I, Sivashinsky G (1994) On creeping detonation in filtration combustion. Shock Waves 4: 109–112

    Article  ADS  MATH  Google Scholar 

  3. Brailovsky I, Gol’dshtein V, Shreiber I, Sivashisky G (1997) On combustion wave driven by diffusion of pressure. Combust Sci Technol 124: 145–165

    Article  Google Scholar 

  4. Brailovsky I, Frankel M, Sivashinsky G (2000) Galloping and spinning modes of subsonic detonation. Combust Theory Model 4: 47–60

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Brailovsky I, Sivashinsky G (2000) Hydraulic resistance as a mechanism for deflagration-to-detonation transition. Combust Flame 122: 492–499

    Article  Google Scholar 

  6. Goldfarb I, Gol’dshtein V, Kuzmenko G (1999) Pressure driven flame in porous media. Phys Lett A 251: 394–403

    Article  ADS  Google Scholar 

  7. Nigmatullin RI (1990) Dynamics of multiphase media. Hemisphere Publishing Corporation, New York

    Google Scholar 

  8. Dullien FA (1992) Porous media, 2nd edn. Academic Press, San Diego

    Google Scholar 

  9. Nield DA, Bejan A (1992) Convection in porous media. Springer, New York

    Google Scholar 

  10. Krapivnik N, Gol’dshtein V (2010) Existence of pressure driven wave. Russ J Phys Chem B 4(4): 574–579

    Article  Google Scholar 

  11. Bykov V, Goldfarb I, Gol’dshtein V (2005) Multi-scale analysis of pressure driven flames. Singular perturbations and hysteresis. SIAM, Philadelphia, pp 257–298

    Google Scholar 

  12. Semenov NN (1928) Zur Theorie des Verbrennungsprozesses. Zeitschr Phys 48: 571–581

    Article  ADS  Google Scholar 

  13. Frank-Kamenetskii DA (1969) Diffusion and heat exchange in chemical kinetics, 2nd edn. Plenum Press, New York

    Google Scholar 

  14. Bykov V, Goldfarb I, Gol’dshtein V (2004) Inertia effect on a structure of pressure driven flames in porous media. J Eng Math 49: 77–97

    Article  MathSciNet  MATH  Google Scholar 

  15. Bykov V, Goldfarb I, Gol’dshtein V, Kagan L, Sivashinsky G (2004) Effects of hydraulic resistance and heat losses on the detonability and flammability limits. Combust Theory Model 8: 413–424

    Article  MathSciNet  ADS  Google Scholar 

  16. Gordon P, Kagan L, Sivashinsky G (2003) Fast subsonic combustion as a free-interface problem. Interfaces Free Bound 5(1): 47–62

    Article  MathSciNet  MATH  Google Scholar 

  17. Penner SS, Williams FA (1961) The theory of steady, one-dimensional, laminar flame propagation for one-step chemical reactions. Astron Acta 7: 171

    MathSciNet  Google Scholar 

  18. Zel’dovich YB (1940) Zurn Exp Teor Fiz 10:542–568 (English translation: In: Ostriker JP, Barenblatt GI, Sanaev RA (eds) Selected studies by Yakov Borisovich Zel’dovich, vol 1. Princeton University Press, Princeton, 1992)

  19. Hartman P (1964) Ordinary differential equation. Wiley, New York

    Google Scholar 

  20. Bautin NN, Leontovich EA (1976) Methody i priemy kachestvennogo issledovaniya dinamicheskih sistem na ploskosti. Moskva, “Nauka” (Russian)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Krapivnik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gol’dshtein, V., Krapivnik, N. Existence and uniqueness of the traveling front in premixed combustion of porous media. J Eng Math 72, 177–186 (2012). https://doi.org/10.1007/s10665-011-9474-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-011-9474-4

Keywords

Navigation