Journal of Engineering Mathematics

, Volume 72, Issue 1, pp 177–186 | Cite as

Existence and uniqueness of the traveling front in premixed combustion of porous media

  • V. Gol’dshtein
  • N. Krapivnik


We study a mathematical model of combustion processes in an inert porous media filled with a combustible gaseous mixture. We focus on the phenomenon of a combustion wave driven by a local pressure elevation. In this article, we are concerned with subsonic pressure-driven flames and with the case of a quadratic dependence of the friction force on the velocity of the gaseous mixture. After a suitable non-dimensionalization, the resulting mathematical model includes three nonlinear ordinary differential equations (ODEs). The system contains an unknown parameter V that represents the traveling wave speed. The existence of the traveling wave is proven in this study. It means that the parameter V can be chosen so that the corresponding phase trajectory satisfies the boundary conditions. Moreover, under reasonable assumptions about the monotonicity of the flame front, we prove the uniqueness of the pressure-driven wave.


Porous media Pressure-driven flame Traveling wave solutions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Babkin VS (1993) Filtration combustion of gases. Present state of affairs and prospects. Pure Appl Chem 64: 335–344CrossRefGoogle Scholar
  2. 2.
    Gol’dshtein V, Shreiber I, Sivashinsky G (1994) On creeping detonation in filtration combustion. Shock Waves 4: 109–112ADSMATHCrossRefGoogle Scholar
  3. 3.
    Brailovsky I, Gol’dshtein V, Shreiber I, Sivashisky G (1997) On combustion wave driven by diffusion of pressure. Combust Sci Technol 124: 145–165CrossRefGoogle Scholar
  4. 4.
    Brailovsky I, Frankel M, Sivashinsky G (2000) Galloping and spinning modes of subsonic detonation. Combust Theory Model 4: 47–60MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    Brailovsky I, Sivashinsky G (2000) Hydraulic resistance as a mechanism for deflagration-to-detonation transition. Combust Flame 122: 492–499CrossRefGoogle Scholar
  6. 6.
    Goldfarb I, Gol’dshtein V, Kuzmenko G (1999) Pressure driven flame in porous media. Phys Lett A 251: 394–403ADSCrossRefGoogle Scholar
  7. 7.
    Nigmatullin RI (1990) Dynamics of multiphase media. Hemisphere Publishing Corporation, New YorkGoogle Scholar
  8. 8.
    Dullien FA (1992) Porous media, 2nd edn. Academic Press, San DiegoGoogle Scholar
  9. 9.
    Nield DA, Bejan A (1992) Convection in porous media. Springer, New YorkGoogle Scholar
  10. 10.
    Krapivnik N, Gol’dshtein V (2010) Existence of pressure driven wave. Russ J Phys Chem B 4(4): 574–579CrossRefGoogle Scholar
  11. 11.
    Bykov V, Goldfarb I, Gol’dshtein V (2005) Multi-scale analysis of pressure driven flames. Singular perturbations and hysteresis. SIAM, Philadelphia, pp 257–298Google Scholar
  12. 12.
    Semenov NN (1928) Zur Theorie des Verbrennungsprozesses. Zeitschr Phys 48: 571–581ADSCrossRefGoogle Scholar
  13. 13.
    Frank-Kamenetskii DA (1969) Diffusion and heat exchange in chemical kinetics, 2nd edn. Plenum Press, New YorkGoogle Scholar
  14. 14.
    Bykov V, Goldfarb I, Gol’dshtein V (2004) Inertia effect on a structure of pressure driven flames in porous media. J Eng Math 49: 77–97MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Bykov V, Goldfarb I, Gol’dshtein V, Kagan L, Sivashinsky G (2004) Effects of hydraulic resistance and heat losses on the detonability and flammability limits. Combust Theory Model 8: 413–424MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Gordon P, Kagan L, Sivashinsky G (2003) Fast subsonic combustion as a free-interface problem. Interfaces Free Bound 5(1): 47–62MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Penner SS, Williams FA (1961) The theory of steady, one-dimensional, laminar flame propagation for one-step chemical reactions. Astron Acta 7: 171MathSciNetGoogle Scholar
  18. 18.
    Zel’dovich YB (1940) Zurn Exp Teor Fiz 10:542–568 (English translation: In: Ostriker JP, Barenblatt GI, Sanaev RA (eds) Selected studies by Yakov Borisovich Zel’dovich, vol 1. Princeton University Press, Princeton, 1992)Google Scholar
  19. 19.
    Hartman P (1964) Ordinary differential equation. Wiley, New YorkGoogle Scholar
  20. 20.
    Bautin NN, Leontovich EA (1976) Methody i priemy kachestvennogo issledovaniya dinamicheskih sistem na ploskosti. Moskva, “Nauka” (Russian)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of MathematicsBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations