Skip to main content
Log in

Influence of gravity on the spreading of two-dimensional droplets over topographical substrates

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The influence of gravity on the motion of a two-dimensional droplet of a partially wetting fluid over a topographical substrate is considered. The spreading dynamics is modeled under the assumption of small contact angles in which case the long-wave expansion in the Stokes-flow regime can be employed to derive a single equation for the evolution of the droplet thickness. The relative importance of gravity to capillarity in the equation is measured by the Bond number which is taken to be low to moderate. In this regime, the flow in the vicinity of the contact line is matched asymptotically through a singular perturbation approach to the flow in the bulk of the droplet to yield a set of coupled integrodifferential equations for the location of the two droplet fronts. The matching procedure is verified through direct comparisons with numerical solutions to the full problem. The equations obtained by asymptotic matching are analyzed in the phase plane and the effects of Bond number on the droplet dynamics and its equilibria are scrutinized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blossey R (2003) Self-cleaning surfaces—virtual realities. Nat Mater 2: 301–306

    Article  ADS  Google Scholar 

  2. Chu K-H, Xiao R, Wang EN (2010) Uni-directional liquid spreading on asymmetric nanostructured surfaces. Nat Mater 9(5): 413–417

    Article  ADS  Google Scholar 

  3. Dussan VEB (1979) On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu Rev Fluid Mech 11: 371–400

    Article  ADS  Google Scholar 

  4. de Gennes P-G (1985) Wetting: statics and dynamics. Rev Mod Phys 57: 827–863

    Article  ADS  Google Scholar 

  5. Blake TD (1993) Dynamic contact angles and wetting kinetics. In: Berg JC (ed) Wettability, chap 5. Marcel Dekker Inc., New York, pp 251–310

    Google Scholar 

  6. Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E (2009) Wetting and spreading. Rev Mod Phys 81: 739–805

    Article  ADS  Google Scholar 

  7. Huh C, Scriven LE (1971) Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J Colloid Interface Sci 35: 85–101

    Article  Google Scholar 

  8. Voinov OV (1976) Hydrodynamics of wetting. Fluid Dyn 11: 714–721

    Article  ADS  Google Scholar 

  9. Greenspan HP (1978) On the motion of a small viscous droplet that wets a surface. J Fluid Mech 84: 125–143

    Article  ADS  MATH  Google Scholar 

  10. Hocking LM (1983) The spreading of a thin drop by gravity and capillarity. Q J Mech Appl Math 36: 55–69

    Article  MATH  Google Scholar 

  11. Hocking LM (1994) The spreading of drops with intermolecular forces. Phys Fluids 6: 3224–3228

    Article  ADS  MATH  Google Scholar 

  12. Pismen LM, Eggers J (2008) Solvability condition for the moving contact line. Phys Rev E 78: 056304

    Article  MathSciNet  ADS  Google Scholar 

  13. Ehrhard P, Davis SH (1991) Non-isothermal spreading of liquid drops on horizontal plates. J Fluid Mech 229: 365–388

    Article  ADS  MATH  Google Scholar 

  14. Schwartz LW, Eley RR (1998) Simulation of droplet motion on low-energy and heterogeneous surfaces. J Colloid Interface Sci 202: 173–188

    Article  Google Scholar 

  15. Sodtke C, Ajaev VS, Stephan P (2008) Dynamics of volatile liquid droplets on heated surfaces: theory versus experiment. J Fluid Mech 610: 343–362

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28: 988–994

    Article  Google Scholar 

  17. Shuttleworth R, Bailey GLJ (1948) The spreading of a liquid over a rough solid. Discuss Faraday Soc 3: 16–22

    Article  Google Scholar 

  18. Johnson RE, Dettre RH (1964) Contact angle hysteresis. I. Study of an idealized rough surface. Adv Chem Ser 43: 112–135

    Article  Google Scholar 

  19. Johnson RE, Dettre RH, Brandreth DA (1977) Dynamic contact angles and contact angle hysteresis. J Colloid Interface Sci 62: 205–212

    Article  Google Scholar 

  20. Huh C, Mason SG (1977) Effects of surface roughness on wetting (theoretical). J Colloid Interface Sci 60: 11–38

    Article  Google Scholar 

  21. Gramlich CM, Mazouchi A, Homsy GM (2004) Time-dependent free surface Stokes flow with a moving contact line. II. Flow over wedges and trenches. Phys Fluids 16: 1660–1667

    Article  MathSciNet  ADS  Google Scholar 

  22. Gaskell PH, Jimack PK, Sellier M, Thompson HM (2004) Efficient and accurate time adaptive multigrid simulations of droplet spreading. Int J Numer Methods Fluids 45: 1161–1186

    Article  MATH  Google Scholar 

  23. Troian S, Herbolzheimer S, Safran S, Joanny J (1989) Fingering instabilities of driven spreading films. Europhys Lett 10: 25–39

    Article  ADS  Google Scholar 

  24. Kalliadasis S (2000) Nonlinear instability of a contact line driven by gravity. J Fluid Mech 413: 355–378

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Savva N, Kalliadasis S (2009) Two-dimensional droplet spreading over topographical substrates. Phys Fluids 21: 092102

    Article  ADS  Google Scholar 

  26. Savva N, Kalliadasis S, Pavliotis GA (2010) Two-dimensional droplet spreading over random topographical substrates. Phys Rev Lett 104: 084501

    Article  ADS  Google Scholar 

  27. McHale G, Newton MI, Rowan SM, Banerjee M (1995) The spreading of small viscous stripes of oil. J Appl Phys D Appl Phys 28: 1925–1929

    Article  ADS  Google Scholar 

  28. Hocking LM (1981) Sliding and spreading of two-dimensional drops. Q J Mech Appl Math 34: 37–55

    Article  MathSciNet  MATH  Google Scholar 

  29. Reznik SN, Zussman E, Yarin AL (2002) Motion of an inclined plate supported by a sessile two-dimensional drop. Phys Fluids 14: 107–117

    Article  MathSciNet  ADS  Google Scholar 

  30. Lister JR, Morrison NF, Rallison JM (2006) Sedimentation of a two-dimensional drop towards a rigid horizontal plane. J Fluid Mech 552: 345–351

    Article  ADS  MATH  Google Scholar 

  31. Zhang J, Miksis MJ, Bankoff SG (2006) Nonlinear dynamics of a two-dimensional viscous drop under shear flow. Phys Fluids 18: 072106

    Article  ADS  Google Scholar 

  32. Nakaya C (1974) Spread of fluid drops over a horizontal plane. J Phys Soc Jpn 37: 539–543

    Article  ADS  Google Scholar 

  33. Roux DCD, Cooper-White JJ (2004) Dynamics of water spreading on a glass surface. J Colloid Interface Sci 277: 424–436

    Article  Google Scholar 

  34. Lauga E, Brenner MP, Stone HA (2008) Microfluidics: the no-slip boundary condition. In: Tropea C, Foss JF, Yarin A (eds) Springer handbook of experimental fluid mechanics, chap 19. Springer, New York

    Google Scholar 

  35. Cox RG (1983) The spreading of a liquid on a rough solid surface. J Fluid Mech 131: 1–26

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Miksis MJ, Davis SH (1994) Slip over rough and coated surfaces. J Fluid Mech 273: 125–139

    Article  ADS  MATH  Google Scholar 

  37. Saprykin S, Trevelyan PMJ, Koopmans RJ, Kalliadasis S (2007) Free-surface thin-film flows over uniformly heated topography. Phys Rev E 75: 026306

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kalliadasis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savva, N., Kalliadasis, S. Influence of gravity on the spreading of two-dimensional droplets over topographical substrates. J Eng Math 73, 3–16 (2012). https://doi.org/10.1007/s10665-010-9426-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-010-9426-4

Keywords

Navigation