Skip to main content
Log in

An oscillatory flow phenomenon in microtube flows of thermally responsive fluids

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

A simple asymptotic model for the flow of a thermally responsive fluid in a microtube is derived. At low temperatures these fluids behave as a Newtonian fluid; however, above a critical temperature they (reversibly) form gel-like structures. Also, because of the small length scales involved in microfluidic flows, viscous heating can become significant. This can lead to gelation simply from the temperature change due to viscous heating. Our model takes into account viscous heating, as well as possible conduction through the channel walls. The rheology of the thermally responsive fluid is modelled using a bi-viscosity model, with the gel phase being represented by a constant large viscosity. The model is then used to show that, when the viscous heating exceeds a critical level, an oscillatory flow behaviour can occur. These oscillations eventually become damped out as the system reaches a steady state; however, the time it takes for this to occur can become excessively large. The physical mechanisms that cause the oscillatory behaviour are examined, and the criteria for the oscillatory flow to occur are determined. Some analysis of the oscillations and the timescales involved therein are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fåhræus R, Lindqvist T (1931) The viscosity of the blood in narrow capillary tubes. Am J Physiol 96: 562–568

    Google Scholar 

  2. Kaetsu I, Uchida K, Shindo H, Gomi S, Sutani K (1999) Intelligent type controlled release systems by radiation techniques. Radiat Phys Chem 55(2): 193–201

    Article  ADS  Google Scholar 

  3. Beebe DJ, More JS, Bauer JM, yu Q, Liu RH, Devadoss C, Jo B-H (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404: 588–590

    Article  ADS  Google Scholar 

  4. Yoshida K, Kikuchi M, Park J-H, Yokota S (2002) Fabrication of micro electro-rheological valves (ER valves) by micromachining and experiments. Sens Actuators A 95(2–3): 227–233

    Google Scholar 

  5. Yu C, Mutlu S, Selvaganapathy P, Mastrangelo CH, Svec F, Fréchet JMJ (2003) Flow control valves for analytical microfluidic chips without mechanical parts based in thermally responsive monolithic polymers. Anal Chem 75: 1958–1961

    Article  Google Scholar 

  6. Stoeber B, Yang Z, Liepmann D, Muller SJ (2005) Flow control in microdevices using thermally responsive triblock copolymers. J Microelectromech S 14(2): 207–213

    Article  Google Scholar 

  7. Shirasaki Y, Tanaka J, Makazu H, Tashiro K, Shoji S, Tsukita S, Funatsu T (2006) On-chip cell sorting system using laser-induced heating of a thermoreversible gelation polymer to control flow. Anal Chem 78: 695–701

    Article  Google Scholar 

  8. Prud’homme RK, Wu G, Schneider DK (1996) Structure and rheology studies of poly(oxyethylene-oxypropylene-oxyethlene) aqueous solutions. Langmuir 12: 4651–4659

    Article  Google Scholar 

  9. Koo J, Kleinstreuer C (2004) Viscous dissipation effects in microtubes and microchannels. Int J Heat Mass Transf 47: 3159–3169

    Article  Google Scholar 

  10. Morini GL (2005) Viscous heating in liquid flows in micro-channels. Int J Heat Mass Transf 48: 3637–3647

    Article  MATH  Google Scholar 

  11. Celata GP, Morini GL, Marconi V, McPhail SJ, Zummo G (2006) Using viscous heating to determine the friction factor in microchannels—an experimental validation. Exp Therm Fluid Sci 30: 725–731

    Article  Google Scholar 

  12. Stoeber B, Hu C-M, Liepmann D, Muller SJ (2006) Passive flow control in microdevices using thermally responsive polymer solutions. Phys Fluids 18: 053103

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neville Dubash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubash, N., Frigaard, I.A. & Stoeber, B. An oscillatory flow phenomenon in microtube flows of thermally responsive fluids. J Eng Math 71, 31–53 (2011). https://doi.org/10.1007/s10665-010-9404-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-010-9404-x

Keywords

Navigation