Advertisement

Journal of Engineering Mathematics

, Volume 67, Issue 4, pp 317–328 | Cite as

Boundary and thermal non-equilibrium effects on the onset of Darcy–Brinkman convection in a porous layer

  • I. S. Shivakumara
  • A. L. Mamatha
  • M. Ravisha
Article

Abstract

A local thermal non-equilibrium model for the temperature representing the solid and fluid phases separately is used to study the onset of free convection in a sparsely packed porous layer using the Brinkman-extended Darcy model. The lower boundary of the porous layer is considered to be rigid and isothermal, while the upper isothermal boundary is assumed to be either rigid or free. The Galerkin method is used to obtain the eigenvalue equation, which is then solved numerically. The effects of thermal non-equilibrium and other physical parameters on the onset of convection are analyzed and compared for two types velocity boundary conditions considered. Besides, some known results available in the literature are compared with those obtained from the present study and good agreement is found.

Keywords

Brinkman model Convection Porous medium Thermal non-equilibrium model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Walker K, Homsy GM (1977) A note on convective instabilities in Boussinesq fluids and porous media. ASME J Heat Transf 45: 338–339Google Scholar
  2. 2.
    Rees DAS (2002) The onset of Darcy-Brinkman convection in a porous layer: an asymptotic analysis. Int J Heat Mass Transf 45: 2213–2220MATHCrossRefGoogle Scholar
  3. 3.
    Vafai, K (eds) (2000) Handbook of porous media. Marcel Dekker, New YorkMATHGoogle Scholar
  4. 4.
    Vafai, K (eds) (2005) Handbook of porous media. Taylor and Francis/CRC, Boca RatonGoogle Scholar
  5. 5.
    Nield DA, Bejan A (2006) Convection in porous media, 3rd edn. Springer-Verlag, New YorkGoogle Scholar
  6. 6.
    Vafai K, Amiri A (1998) Non-Darcian effects in combined forced convective flows. In: Ingham DB, Pop I (eds) Transport phenomena in porous media. Oxford, Pergamon, pp 313–329CrossRefGoogle Scholar
  7. 7.
    Kuznetsov AV (1998) Thermal non-equilibrium forced convection in porous media. In: Ingham DB, Pop I (eds) Transport phenomena in porous media. Oxford, Pergamon, pp 103–130CrossRefGoogle Scholar
  8. 8.
    Rees DAS, Pop I (1999) Free convective stagnation-point flow in a porous medium using a thermal non-equilibrium model. Int Commun Heat Mass Transf 26: 945–954CrossRefGoogle Scholar
  9. 9.
    Rees DAS, Pop I (2000) Vertical free convective boundary layer flow in a porous medium using a thermal non-equilibrium model. J Porous Media 3: 31–44MATHGoogle Scholar
  10. 10.
    Rees DAS, Pop I (2002) Vertical free convective boundary-layer flow in a porous medium using a thermal non-equilibrium model: elliptic effects. J Appl Math Phys 53: 1–12CrossRefADSGoogle Scholar
  11. 11.
    Banu N, Rees DAS (2002) Onset of Darcy–Benard convection using a thermal non-equilibrium model. Int J Heat Mass Transf 45: 2221–2228MATHCrossRefGoogle Scholar
  12. 12.
    Postelnicu A, Rees DAS (2003) The onset of Darcy-Brinkman convection in a porous medium using a thermal non-equilibrium model. Part 1: stress-free boundaries. Int J Energy Res 27: 961–973CrossRefGoogle Scholar
  13. 13.
    Baytas AC, Pop I (2002) Free convection in a square porous cavity using a thermal non-equilibrium model. Int J Thermal Sci 41: 861–870CrossRefGoogle Scholar
  14. 14.
    Baytas AC (2004) Thermal non-equilibrium free convection in a cavity filled with a non-Darcy porous medium. In: Ingham DB, Bejan A, Mamut E, PopI (eds) Emerging technologies and techniques in porous media. Kluwer Academic, Dordrecht, pp 247–258Google Scholar
  15. 15.
    Saeid NH (2004) Analysis of mixed convection in a vertical porous layer using non-equilibrium model. Int J Heat Mass Transf 47: 5619–5627MATHCrossRefGoogle Scholar
  16. 16.
    Rees DAS, Pop I (2005) Local thermal non-equilibrium in porous medium convection. In: Ingham DB, Pop I (eds) Transport phenomena in porous media, vol III. Elsevier, Oxford, pp 147–173CrossRefGoogle Scholar
  17. 17.
    Malashetty MS, Shivakumara IS, Kulkarni S (2005) The onset of Lapwood–Brinkman convection using a thermal non-equilibrium model. Int J Heat Mass Transf 48: 1155–1163MATHCrossRefGoogle Scholar
  18. 18.
    Malashetty MS, Shivakumara IS, Kulkarni S (2005) The onset of convection in an anisotropic porous layer using a thermal non-equilibrium model. Trans Porous Media 60: 199–215CrossRefGoogle Scholar
  19. 19.
    Straughan B (2006) Global nonlinear stability in porous convection with a thermal non-equilibrium model. Proc R Soc Lond A 462: 409–418MATHCrossRefMathSciNetADSGoogle Scholar
  20. 20.
    Malashetty MS, Shivakumara IS, Kulkarni S, Swamy M (2006) Convective instability of Oldroyd-B fluid saturated porous layer heated from below using a thermal non-equilibrium model. Trans Porous Media 64: 123–139CrossRefMathSciNetGoogle Scholar
  21. 21.
    Shivakumara IS, Malashetty MS, Chavaraddi KB (2006) Onset of convection in a viscoelastic fluid-saturated sparsely packed porous layer using a thermal non- equilibrium model. Can J Phys 84: 973–990CrossRefADSGoogle Scholar
  22. 22.
    Nouri-Borujerdi A, Noghrehabadi AR, Rees DAS (2007) Onset of convection in a horizontal porous channel with uniform heat generation using a thermal non-equilibrium model. Trans Porous Media 69: 343–357CrossRefMathSciNetGoogle Scholar
  23. 23.
    Nouri-Borujerdi A, Noghrehabadi AR, Rees DAS (2007) The effect of local thermal non-equilibrium on impulsive conduction in porous media. Int J Heat Mass Transf 50: 3244–3249MATHCrossRefGoogle Scholar
  24. 24.
    Postelnicu A (2008) The onset of a Darcy-Brinkman convection using a thermal nonequilibrium model. Part II. Int J Thermal Sci 47: 1587–1594CrossRefGoogle Scholar
  25. 25.
    Guo J, Kaloni PN (1995) Double diffusive convection in a porous medium, nonlinear stability and the Brinkman effect. Stud Appl Math 94: 341–358MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • I. S. Shivakumara
    • 1
  • A. L. Mamatha
    • 2
  • M. Ravisha
    • 2
  1. 1.Department of Mathematics, UGC-Centre for Advanced Studies in Fluid MechanicsBangalore UniversityBangaloreIndia
  2. 2.Department of MathematicsSmt. Rukmini Shedthi Memorial National Government First Grade CollegeBarkur, Udupi DistrictIndia

Personalised recommendations