Journal of Engineering Mathematics

, Volume 68, Issue 1, pp 57–83 | Cite as

Fiber-reinforced hyperelastic solids: a realizable homogenization constitutive theory

  • Oscar Lopez-Pamies
  • Martín I. Idiart


A new homogenization theory to model the mechanical response of hyperelastic solids reinforced by a random distribution of aligned cylindrical fibers is proposed. The central idea is to devise a special class of microstructures—by means of an iterated homogenization procedure in finite elasticity together with an exact dilute result for sequential laminates—that allows to compute exactly the macroscopic response of the resulting fiber-reinforced materials. The proposed framework incorporates direct microstructural information up to the two-point correlation functions, and requires the solution to a Hamilton–Jacobi equation with the fiber concentration and the macroscopic deformation gradient playing the role of “time” and “spatial” variables, respectively. In addition to providing constitutive models for the macroscopic response of fiber-reinforced materials, the proposed theory also gives information about the local fields in the matrix and fibers, which can be used to study the evolution of microstructure and the development of instabilities. As a first application of the theory, closed-form results for the case of Neo-Hookean solids reinforced by a transversely isotropic distribution of anisotropic fibers are worked out. These include a novel explicit criterion for the onset of instabilities under general finite-strain loading conditions.


Finite strain Hamilton–Jacobi equation Homogenization Instabilities Microstructures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Honeker CC, Thomas EL (1996) Impact of morphological orientation in determining mechanical properties in triblock copolymers. Chem Mater 8: 1702–1714CrossRefGoogle Scholar
  2. 2.
    Honeker CC, Thomas EL, Albalak RJ, Hadjuk DA, Gruner SM, Capel MC (2000) Perpendicular deformation of a near–single crystal triblock copolymer with a cylindrical morphology. 1. Synchroton SAXS. Macromolecules 33: 9395–9406CrossRefADSGoogle Scholar
  3. 3.
    Finlay HM, Whittaker P, Canham PB (1998) Collagen organization in branching region of human brain arteries. Stroke 29: 1595–1601Google Scholar
  4. 4.
    Quapp KM, Weiss JA (1998) Material characterization of human medial collateral ligament. J Biomech Eng 120: 757–763CrossRefGoogle Scholar
  5. 5.
    Spencer AJM (1972) Deformations of fibre-reinforced materials. Oxford University Press, OxfordMATHGoogle Scholar
  6. 6.
    Triantafyllidis N, Abeyaratne RC (1983) Instability of a finitely deformed fiber-reinforced elastic material. J Appl Mech 50: 149–156CrossRefMATHGoogle Scholar
  7. 7.
    Qiu GY, Pence TJ (1997) Remarks on the behavior of simple directionally reinforced incompressible nonlinearly elastic solids. J Elast 49: 1–30CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Merodio J, Ogden RW (2005) Mechanical response of fiber-reinforced incompressible nonlinear elastic solids. Int J Nonlinear Mech 40: 213–227CrossRefMATHGoogle Scholar
  9. 9.
    Horgan CO, Saccomandi G (2005) A new constitutive theory for fiber-reinforced incompressible nonlinearly elastic solids. J Mech Phys Solids 53: 1985–2015CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Spencer AJM (1984) Continuum theory of the mechanics of fibre-reinforced composites. Springer, Wein, New YorkMATHGoogle Scholar
  11. 11.
    Lopez-Pamies O, Ponte Castañeda P (2006) On the overall behavior, microstructure evolution, and macroscopic stability in reinforced rubbers at large deformations: II—application to cylindrical fibers. J Mech Phys Solids 54: 831–863CrossRefMathSciNetADSMATHGoogle Scholar
  12. 12.
    deBotton G, Hariton I, Socolsky EA (2006) Neo-Hookean fiber-reinforced composites in finite elasticity. J Mech Phys Solids 54: 533–559CrossRefMathSciNetADSMATHGoogle Scholar
  13. 13.
    Brun M, Lopez-Pamies O, Ponte Castañeda P (2007) Homogenization estimates for fiber-reiforced elastomers with periodic microstructures. Int J Solids Struct 44: 5953–5979CrossRefMATHGoogle Scholar
  14. 14.
    Agoras M, Lopez-Pamies O, Ponte Castañeda P (2009) A general hyperelastic model for incompressible fiber-reinforced elastomers. J Mech Phys Solids 57: 268–286CrossRefADSMATHGoogle Scholar
  15. 15.
    Idiart MI (2008) Modeling the macroscopic behavior of two-phase nonlinear composites by infinite-rank laminates. J Mech Phys Solids 56: 2599–2617CrossRefMathSciNetADSMATHGoogle Scholar
  16. 16.
    deBotton G (2005) Transversely isotropic sequentially laminated composites in finite elasticity. J Mech Phys Solids 53: 1334–1361CrossRefMathSciNetADSMATHGoogle Scholar
  17. 17.
    Lopez-Pamies O (2006) On the effective behavior, microstructure evolution, and macroscopic stability of elastomeric composites. Ph.D. Dissertation, University of Pennsylvania, USAGoogle Scholar
  18. 18.
    Willis JR (1982) Elasticity theory of composites. In: Hopkins HG, Sewell MJ (eds) Mechanics of solids, The Rodney Hill 60th anniversary volume. Pergamon Press, Oxford, pp 653–686Google Scholar
  19. 19.
    Hill R (1972) On constitutive macrovariables for heterogeneous solids at finite strain. Proc R Soc Lond A 326: 131–147CrossRefADSMATHGoogle Scholar
  20. 20.
    Geymonat G, Müller S, Triantafyllidis N (1993) Homogenization of nonlinearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity. Arch Ration Mech Anal 122: 231–290CrossRefMATHGoogle Scholar
  21. 21.
    Triantafyllidis N, Nestorovic MD, Schaard MW (2006) Failure surfaces for finitely strained two-phase periodic solids under general in-plane loading. J Appl Mech 73: 505–516CrossRefMATHGoogle Scholar
  22. 22.
    Michel JC, Lopez-Pamies O, Ponte Castañeda P, Triantafyllidis N (2007) Microscopic and macroscopic instabilities in finitely strained porous elastomers. J Mech Phys Solids 55: 900–938CrossRefMathSciNetADSMATHGoogle Scholar
  23. 23.
    Michel JC, Lopez-Pamies O, Ponte Castañeda P, Triantafyllidis N (2010) Microscopic and macroscopic instabilities in finitely strained particle-reinforced elastomers (submitted)Google Scholar
  24. 24.
    Lopez-Pamies O, Ponte Castañeda P (2009) Microstructure evolution in hyperelastic laminates and implications for overall behavior and macroscopic stability. Mech Mater 41: 364–374CrossRefGoogle Scholar
  25. 25.
    Hashin Z (1985) Large isotropic elastic deformation of composites and porous media. Int J Solids Struct 21: 711–720CrossRefMATHGoogle Scholar
  26. 26.
    Bruggerman DAG (1935) Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizittskonstanten und Leitfhigkeiten der Mischkrper aus isotropen Substanzen (German) [Calculation of various physical constants in heterogeneous substances. I. Dielectric constants and conductivity of composites from isotropic substances]. Ann Phys 416:636–664Google Scholar
  27. 27.
    Milton G (2002) The theory of composites. Cambridge University Press, Cambridge, UKCrossRefMATHGoogle Scholar
  28. 28.
    Duva JM (1984) A self-consistent analysis of the stiffening effect of rigid inclusions on a power-law material. ASME J Eng Mater Technol 106: 317–321CrossRefGoogle Scholar
  29. 29.
    Lopez-Pamies O (2010) An exact result for the macroscopic response of particle-reinforced Neo-Hookean solids. J Appl Mech 77: 021016–10210165CrossRefGoogle Scholar
  30. 30.
    Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc R Soc Lond A 241: 376–396CrossRefMathSciNetADSMATHGoogle Scholar
  31. 31.
    Lopez-Pamies O, Ponte Castañeda P (2006) On the overall behavior, microstructure evolution, and macroscopic stability in reinforced rubbers at large deformation: I—theory. J Mech Phys Solids 54: 807–830CrossRefMathSciNetADSMATHGoogle Scholar
  32. 32.
    Lopez-Pamies O (2009) Onset of cavitation in compressible, isotropic, hyperelastic solids. J Elast 94: 115–145CrossRefMathSciNetMATHGoogle Scholar
  33. 33.
    Triantafyllidis N, Maker BN (1985) On the comparison between microscopic and macroscopic instability mechanisms in a class of fiber-reinforced composites. J Appl Mech 52: 794–800CrossRefMATHGoogle Scholar
  34. 34.
    Nesterovic N, Triantafyllidis N (2004) Onset of failure in finitely strained layered composites subjected to combined normal and shear loading. J Mech Phys Solids 52: 941–974CrossRefADSGoogle Scholar
  35. 35.
    Bourdin B, Kohn R (2008) Optimization of structural topology in the high-porosity regime. J Mech Phys Solids 56: 1043–1064CrossRefMathSciNetADSMATHGoogle Scholar
  36. 36.
    Willis JR (1977) Bounds and self-consistent estimates for the overall moduli of anisotropic composites. J Mech Phys Solids 25: 185–202CrossRefADSMATHGoogle Scholar
  37. 37.
    Polyanin AD, Zaitsev VF, Moussiaux A (2002) Handbook of first order partial differential equations. Taylor & Francis, LondonMATHGoogle Scholar
  38. 38.
    Ponte Castañeda P, Willis JR (1995) The effect of spatial distribution on the effective behavior of composite materials and cracked media. J Mech Phys Solids 43: 1919–1951CrossRefMathSciNetMATHGoogle Scholar
  39. 39.
    McLaughlin R (1977) A study of the differential scheme for composite materials. Int J Eng Sci 15: 237–244CrossRefMATHGoogle Scholar
  40. 40.
    Ogden R (1978) Extremum principles in non-linear elasticity and theirapplication to composites—I Theory Int J Solids Struct. 14:265–282Google Scholar
  41. 41.
    He QC, Le Quang H, Feng ZQ (2006) Exact results for the homogenization of elastic fiber-reinforced solids at finite strain. J Elast 83: 153–177CrossRefMathSciNetMATHGoogle Scholar
  42. 42.
    Idiart MI, Lopez-Pamies O (2010) Two-phase hyperelastic composites: a realizable homogenization constitutive theory (in preparation)Google Scholar
  43. 43.
    Idiart MI, Ponte Castañeda P (2007) Field statistics in nonlinear composites. I Theory Proc R Soc Lond A 463: 183–202CrossRefADSMATHGoogle Scholar
  44. 44.
    Merodio J, Ogden RW (2003) Instabilities and loss of ellipticity in fiber-reinforced nonlinearly elastic solids under plane deformation. Int J Solids Struct 40: 4707–4727CrossRefMathSciNetMATHGoogle Scholar
  45. 45.
    Lipton R (1992) Characterization of bounds and perturbation series for transversely isotropic, incompressible elastic composites. J Elast 27: 193–225CrossRefMathSciNetMATHGoogle Scholar
  46. 46.
    Milton GW (1986) Modeling the properties of composites by laminates. In: Ericksen JL, Kinderlehrer D, Kohn R, Lions J-L (eds) Homogenization and effective moduli of materials and media, The IMA volumes in mathematics and its applications, vol 1. Springer, Berlin, pp 150–174Google Scholar
  47. 47.
    Moraleda J, Segurado J, Llorca J (2009) Finite deformation of incompressible fiber-reinforced elastomers: a computational micromechanics approach. J Mech Phys Solids. doi: 10.1016/j.jmps.2009.05.007
  48. 48.
    Benton SH (1977) The Hamilton–Jacobi equation: a global approach. Mathematics in Science and Engineering, vol 131. Academic Press, New YorkGoogle Scholar
  49. 49.
    Ericksen JL, Rivlin RS (1954) Large elastic deformations of homogeneous anisotropic materials. J Ration Mech Anal 3: 281–301MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringState University of New YorkStony BrookUSA
  2. 2.Área Departamental Aeronáutica, Facultad de IngenieríaUniversidad Nacional de La PlataLa PlataArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina

Personalised recommendations