Journal of Engineering Mathematics

, Volume 66, Issue 1–3, pp 11–31 | Cite as

Stability and dynamics of self-similarity in evolution equations

  • Andrew J. Bernoff
  • Thomas P. Witelski


A methodology for studying the linear stability of self-similar solutions is discussed. These fundamental ideas are illustrated on three prototype problems: a simple ODE with finite-time blow-up, a second-order semi-linear heat equation with infinite-time spreading solutions, and the fourth-order Sivashinsky equation with finite-time self-similar blow-up. These examples are used to show that self-similar dynamics can be studied using many of the ideas arising in the study of dynamical systems. In particular, the use of dimensional analysis to derive scaling invariant similarity variables is discussed, as well as the role of symmetries in the context of stability of self-similar dynamics. The spectrum of the linear stability problem determines the rate at which the solution will approach a self-similar profile. For blow-up solutions it is demonstrated that the symmetries give rise to positive eigenvalues associated with the symmetries, and it is shown how this stability analysis can identify a unique stable (and observable) attracting solution from a countable infinity of similarity solutions.


Dynamical systems Scale-invariance Self-similarity Stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barenblatt GI (1996) Scaling, self-similarity, and intermediate asymptotics. Cambridge University Press, Cambridge, p 386MATHGoogle Scholar
  2. 2.
    Barenblatt GI (2003) Scaling. Cambridge University Press, Cambridge, p 171MATHGoogle Scholar
  3. 3.
    Kadanoff LP (1997) Singularities and blowups. Phys Today 50: 11–13CrossRefGoogle Scholar
  4. 4.
    Eggers J, Fontelos MA (2009) The role of self-similarity in singularities of partial differential equations. Nonlinearity 22: R1–R44MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Tanner LH (1979) The spreading of silicone oil drops on horizontal surfaces. J Phys D 12: 1473–1484CrossRefADSGoogle Scholar
  6. 6.
    Oron A, Davis SH, Bankoff SG (1997) Long-scale evolution of thin liquid films. Rev Mod Phys 69: 931–980CrossRefADSGoogle Scholar
  7. 7.
    Witelski TP, Bernoff AJ (1998) Self-similar asymptotics for linear and nonlinear diffusion equations. Stud Appl Math 100: 153–193MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Zel’dovich YB, Raizer YP (2002) Physics of shock waves and high temperature hydrodynamic phenomena. Dover, New York, p 944Google Scholar
  9. 9.
    Kleinstein G, Ting L (1971) Optimum one-term solutions for heat conduction problems. Z Angew Math Mech 51: 1–16MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kloosterziel RC (1990) On the large-time asymptotics of the diffusion equation on infinite domains. J Eng Math 24: 213–236MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Bernoff AJ, Lingevitch JF (1994) Rapid relaxation of an axisymmetric vortex. Phys Fluids 6: 3717–3723MATHCrossRefADSGoogle Scholar
  12. 12.
    Gallay T, Wayne CE (2002) Invariant manifolds and the long-time asymptotics of the Navier–Stokes and vorticity equations on R 2. Arch Ration Mech Anal 163: 209–258MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Bebernes J, Eberly D (1989) Mathematical problems from combustion theory vol 83 of Applied Mathematical Sciences. Springer, New York, p 177Google Scholar
  14. 14.
    Stevens A, Othmer HG (1997) Aggregation, blowup, and collapse. SIAM J Appl Math 57: 1044–1081MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Levine HA (1989) Quenching, nonquenching, and beyond quenching for solution of some parabolic equations. Ann Math Pura Appl 155: 243–260MATHCrossRefGoogle Scholar
  16. 16.
    Galaktionov VA, Vázquez JL (2002) The problem of blow-up in nonlinear parabolic equations. Discret Contin Dyn Syst 8: 399–433MATHCrossRefGoogle Scholar
  17. 17.
    Guo YJ, Pan ZG, Ward MJ (2005) Touchdown and pull-in voltage behavior of a MEMS device with varying dielectric properties. SIAM J Appl Math 66: 309–338MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Flores G, Mercado G, Pelesko JA, Smyth N (2007) Analysis of the dynamics and touchdown in a model of electrostatic MEMS. SIAM J Appl Math 67: 434–446MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Brenner MP, Lister JR, Stone HA (1996) Pinching threads, singularities and the number 0.0304.... Phys Fluids 8: 2827–2836MATHCrossRefMathSciNetADSGoogle Scholar
  20. 20.
    Eggers J, Villermaux E (2008) Physics of liquid jets. Rep Prog Phys 71: 1–79CrossRefGoogle Scholar
  21. 21.
    Bernoff AJ, Bertozzi AL, Witelski TP (1998) Axisymmetric surface diffusion: dynamics and stability of self-similar pinchoff. J Stat Phys 93: 725–776MATHCrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Zhang WW, Lister JR (1999) Similarity solutions for van der Waals rupture of a thin film on a solid substrate. Phys Fluids 11: 2454–2462MATHCrossRefMathSciNetADSGoogle Scholar
  23. 23.
    Vaynblat D, Lister JR, Witelski TP (2001) Rupture of thin viscous films by van der Waals forces I: evolution and self-similarity. Phys Fluids 13: 1130–1140CrossRefADSGoogle Scholar
  24. 24.
    Vaynblat D, Lister JR, Witelski TP (2001) Symmetry and self-similarity in rupture and pinchoff: a geometric bifurcation. Eur J Appl Math 12: 209–232MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Witelski TP, Bernoff AJ (1999) Stability of self-similar solutions for van der Waals driven thin film rupture. Phys Fluids 11: 2443–2445MATHCrossRefMathSciNetADSGoogle Scholar
  26. 26.
    Witelski TP, Bernoff AJ (2000) Dynamics of three-dimensional thin film rupture. Physica D 147: 155–176MATHCrossRefMathSciNetADSGoogle Scholar
  27. 27.
    Levine HA (1990) The role of critical exponents in blowup theorems. SIAM Rev 32: 262–288MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Bandle C, Brunner H (1998) Blowup in diffusion equations: a survey. J Comput Appl Math 97: 3–22MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Samarskii AA, Galaktionov VA, Kurdyumov SP, Mikhailov AP (1995) Blow-up in quasilinear parabolic equations. Walter de Gruyter & Co, Berlin, p 535MATHGoogle Scholar
  30. 30.
    Hydon PE (2000) Symmetry methods for differential equations. Cambridge University Press, Cambridge, p 213MATHGoogle Scholar
  31. 31.
    Bluman GW, Anco SC (2002) Symmetry and integration methods for differential equations. Springer, New York, p 419MATHGoogle Scholar
  32. 32.
    Dresner L (1999) Applications of Lie’s theory of ordinary and partial differential equations. Institute of Physics Publishing, Bristol, p 225MATHCrossRefGoogle Scholar
  33. 33.
    Olver PJ (1993) Applications of Lie groups to differential equations. Springer, New York, p 513MATHGoogle Scholar
  34. 34.
    Merle F, Zaag H (2002) O.D.E. type behavior of blow-up solutions of nonlinear heat equations. Discret Contin Dyn Syst 8: 435–450MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Berger M, Kohn RV (1988) A rescaling algorithm for the numerical calculation of blowing-up solutions. Commun Pure Appl Math 41: 841–863MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Giga Y, Kohn RV (1985) Asymptotically self-similar blow-up of semilinear heat equations. Commun Pure Appl Math 38: 297–319MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Giga Y, Kohn RV (1987) Characterizing blowup using similarity variables. Indiana Univ Math J 36: 1–40MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Velazquez JJ, Galaktionov VA, Herrero MA (1991) The space structure near a blow-up point for semilinear heat equations: a formal approach. Comput Math Math Phys 31: 46–55MathSciNetGoogle Scholar
  39. 39.
    Galaktionov VA, Kurdyumov SP, Samarskiĭ AA (1985) Asymptotic “eigenfunctions” of the Cauchy problem for a nonlinear parabolic equation. Mat Sb (N.S.) 126(168):435–472, 592Google Scholar
  40. 40.
    Kamin S, Peletier LA (1985) Singular solutions of the heat equation with absorption. Proc Am Math Soc 95: 205–210MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Brezis H, Peletier LA, Terman D (1986) A very singular solution of the heat equation with absorption. Arch Ration Mech Anal 95: 185–209MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Wayne CE (1997) Invariant manifolds for parabolic partial differential equations on unbounded domains. Arch Ration Mech Anal 138: 279–306MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Bricmont J, Kupiainen A, Lin G (1994) Renormalization group and asymptotics of solutions of nonlinear parabolic equations. Commun Pure Appl Math 47: 893–922MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Bricmont J, Kupiainen A (1996) Stable non-Gaussian diffusive profiles. Nonlinear Anal 26: 583–593MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Filippas S, Kohn RV (1992) Refined asymptotics for the blowup of u t−δu = u p. Commun Pure Appl Math 45: 821–869MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Bebernes J, Bricher S (1992) Final time blowup profiles for semilinear parabolic equations via center manifold theory. SIAM J Math Anal 23: 852–869MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Galaktionov VA, Williams JF (2004) On very singular similarity solutions of a higher-order semilinear parabolic equation. Nonlinearity 17: 1075–1099MATHCrossRefMathSciNetADSGoogle Scholar
  48. 48.
    Galaktionov VA, Vázquez JL (2004) A stability technique for evolution partial differential equations: a dynamical systems approach. Birkhäuser, Boston, MA, p 377MATHGoogle Scholar
  49. 49.
    Sarocka DC, Bernoff AJ, Rossi LF (1999) Large-amplitude solutions to the Sivashinsky and Riley–Davis equations for directional solidification. Physica D 127: 146–176MATHCrossRefMathSciNetADSGoogle Scholar
  50. 50.
    Sivashinsky GI (1983) On cellular instability in the solidification of a dilute binary alloy. Physica D 8: 243–248CrossRefMathSciNetADSGoogle Scholar
  51. 51.
    Childress S, Spiegel EA (2004) Pattern formation in a suspension of swimming microorganisms: nonlinear aspects. In: Givoli D, Grote MJ, Papanicolaou GC (eds) A celebration of mathematical modeling. Kluwer, Dordrecht, pp 33–52Google Scholar
  52. 52.
    Novick-Cohen A (1990) On Cahn-Hilliard type equations. Nonlinear Anal 15: 797–814MATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Novick-Cohen A (1992) Blow up and growth in the directional solidification of dilute binary alloys. Appl Anal 47: 241–257CrossRefMathSciNetGoogle Scholar
  54. 54.
    Straughan B (1998) Explosive instabilities in mechanics. Springer, Berlin, p 196MATHGoogle Scholar
  55. 55.
    Bernoff AJ, Bertozzi AL (1995) Singularities in a modified Kuramoto–Sivashinsky equation describing interface motion for phase transition. Physica D 85: 375–404MATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    Bertozzi AL, Pugh MC (1998) Long-wave instabilities and saturation in thin film equations. Commun Pure Appl Math 51: 625–661CrossRefMathSciNetGoogle Scholar
  57. 57.
    Bertozzi AL, Pugh MC (2000) Finite-time blow-up of solutions of some long-wave unstable thin film equations. Indiana Univ Math J 49: 1323–1366MATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    Evans JD, Galaktionov VA, King JR (2007) Source-type solutions of the fourth-order unstable thin film equation. Eur J Appl Math 18: 273–321MATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    Witelski TP, Bernoff AJ, Bertozzi AL (2004) Blowup and dissipation in a critical-case unstable thin film equation. Eur J Appl Math 15: 223–256MATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    Hocherman T, Rosenau P (1993) On KS-type equations the evolution and rupture of a liquid interface. Physica D 67: 113–125MATHCrossRefADSGoogle Scholar
  61. 61.
    Gandarias ML, Ibragimov NH (2008) Equivalence group of a fourth-order evolution equations unifying various non-linear models. Commun Nonlinear Sci Numer Simul 13: 259–268MATHCrossRefMathSciNetADSGoogle Scholar
  62. 62.
    Levine HA (1973) Some nonexistence and instability theorems for solutions of formally parabolic equations of the form \({Pu_{t}=-Au+{\mathcal F}(u)}\). Arch Ration Mech Anal 51: 371–386MATHCrossRefGoogle Scholar
  63. 63.
    Evans JD, Galaktionov VA, Williams JF (2006) Blow-up and global asymptotics of the limit unstable Cahn–Hilliard equation. SIAM J Math Anal 38: 64–102MATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    Witelski TP (2002) Computing finite-time singularities in interfacial flows. In: Bourlioux A, Gander MJ (eds) Modern methods in scientific computing and applications. Kluwer, Dordrecht, pp 451–487Google Scholar
  65. 65.
    Budd CJ, Piggott MD (2001) The geometric integration of scale-invariant ordinary and partial differential equations. J Comput Appl Math 128: 399–422MATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    Budd CJ, Piggott MD (2003) Geometric integration and applications. In: Cucker F (eds) Handbook of numerical analysis, vol XI. Elsevier/North Holland, Amsterdam, pp 35–139Google Scholar
  67. 67.
    Bernis F, Peletier LA (1996) Two problems from draining flows involving third-order ordinary differential equations. SIAM J Math Anal 27: 515–527MATHCrossRefMathSciNetGoogle Scholar
  68. 68.
    Boatto S, Kadanoff LP, Olla P (1993) Traveling-wave solutions to thin-film equations. Phys Rev E 48: 4423–4431CrossRefMathSciNetADSGoogle Scholar
  69. 69.
    Carr J (1981) Applications of centre manifold theory. Springer, New York, p 142MATHGoogle Scholar
  70. 70.
    Guckenheimer J, Holmes P (1990) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer, New York, p 459Google Scholar
  71. 71.
    Evans JD, Galaktionov VA, King JR (2007) Unstable sixth-order thin film equation. I. Blow-up similarity solutions. Nonlinearity 20: 1799–1841MATHCrossRefMathSciNetADSGoogle Scholar
  72. 72.
    Budd CJ, Galaktionov VA, Williams JF (2004) Self-similar blow-up in higher-order semilinear parabolic equations. SIAM J Appl Math 64: 1775–1809MATHCrossRefMathSciNetGoogle Scholar
  73. 73.
    Budd CJ, Rottschäfer V, Williams JF (2005) Multibump, blow-up, self-similar solutions of the complex Ginzburg-Landau equation. SIAM J Appl Dyn Syst 4: 649–678MATHCrossRefMathSciNetGoogle Scholar
  74. 74.
    Palais B (1988) Blowup for nonlinear equations using a comparison principle in Fourier space. Commun Pure Appl Math 41: 165–196MATHCrossRefMathSciNetGoogle Scholar
  75. 75.
    Chapman SJ, King JR, Adams KL (1998) Exponential asymptotics and Stokes lines in nonlinear ordinary differential equations. Proc R Soc Lond Ser A 454: 2733–2755MATHCrossRefMathSciNetGoogle Scholar
  76. 76.
    Ascher UM, Mattheij RMM, Russell RD (1995) Numerical solution of boundary value problems for ordinary differential equations. Society for Industrial and Applied Mathematics, Philadelphia, PA, p 595MATHGoogle Scholar
  77. 77.
    Burke J, Knobloch E (2007) Homoclinic snaking:structure and stability. Chaos 17: 037102CrossRefMathSciNetADSGoogle Scholar
  78. 78.
    Beck M, Knobloch J, Lloyd D, Sandstede B, Wagenknecht T (2009) Snakes, ladders, and isolas of localized patterns. SIAM J Math Anal 41: 936–972CrossRefMathSciNetGoogle Scholar
  79. 79.
    Rottschäfer V, Kaper TJ (2003) Geometric theory for multi-bump, self-similar, blowup solutions of the cubic nonlinear Schrödinger equation. Nonlinearity 16: 929–961MATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of MathematicsHarvey Mudd CollegeClaremontUSA
  2. 2.Department of MathematicsDuke UniversityDurhamUSA

Personalised recommendations