Journal of Engineering Mathematics

, Volume 54, Issue 3, pp 261–271 | Cite as

The Transfer of Fibres in the Carding Machine

  • M. E. M. Lee
  • H. Ockendon


The problem of understanding the transfer of fibres between carding-machine surfaces is addressed by considering the movement of a single fibre in an airflow. The structure of the aerodynamic flow field predicts how and when fibres migrate between the different process surfaces. In the case of a revolving-flats carding machine the theory predicts a “strong” aerodynamic mechanism between taker-in and cylinder and a “weak” mechanism between cylinder and removal cylinder resulting in effective transfer in the first case and a more limited transfer in the second.


carding machine fibre transport tethered fibres transfer mechanism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dehghani A., Lawrence C.A., Mahmoudi M., Greenwood B., Iype C. (2000). An assessment of changes in the state of fibre mass during the early stages of the carding process. J. Textile Inst. 91:359–373CrossRefGoogle Scholar
  2. 2.
    Lee M.E.M., Ockendon H. (2005). A continuum model for entangled fibres. Eur. J. Appl. Math. 16:145–160CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    G.Kozyreff, M.E.M. Lee and H.Ockendon, Towards understanding the internal forces in a tuft of fibres. Submitted.Google Scholar
  4. 4.
    Baturin Y.A. (1964). The load of the surfaces and the proportion of fibre transferred between the surfaces. Technol. Textile Industry, U.S.S.R. 4:37–43Google Scholar
  5. 5.
    Lawrence C.A., Dehghani A., Mahmoudi M., Greenwood B., Iype C. (2000). Fibre dynamics in the revolving-flats card, part 1, a critical review. AUTEX Res. J. 1:64–77Google Scholar
  6. 6.
    Dehghani A., Lawrence C.A., Mahmoudi M., Greenwood B., Iype C. (2004). Aerodynamics and fibre transfer at the cylinder-doffer interface. J. Textile Inst. 95:35–49CrossRefGoogle Scholar
  7. 7.
    Taylor G.I. (1952). Analysis of the swimming of long and narrow animals. Proc. R. Soc. London A 214:158–183MATHADSCrossRefGoogle Scholar
  8. 8.
    Cox R.G. (1970). The motion of long slender bodies in a viscous fluid part 1 General theory. J. Fluid Mech. 44:791–810MATHCrossRefADSGoogle Scholar
  9. 9.
    Batchelor G.K. (1970). Slender-body theory for particles of arbitrary cross-section in stokes flow. J. Fluid Mech. 44:419–440MATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Morton W.E., Hearle J.W.S. (1975). Physical Properties of Textile Fibres. William Heinemann, London, 660 pp.Google Scholar
  11. 11.
    Love A.E.H. (1927). A Treatise on the Mathematical Theory of Elasticity, 4th edn. Cambridge University Press, Cambridge, 643 ppMATHGoogle Scholar
  12. 12.
    Hinch E.J. (1976). The distortion of a flexible inextensible thread in a shearing flow. J. Fluid Mech. 74:317–333MATHCrossRefADSGoogle Scholar
  13. 13.
    Jones M.A., Smith F.T. (2003). Fluid motion for car undertrays in ground effect. J. Engng. Math. 45:309–334CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Abhiraman A.S., George W. (1973). A new aspect of the stochastic nature of carding. Textile Res. J. 43:452–467CrossRefGoogle Scholar
  15. 15.
    Gutierrez H.M., Rust J.P., Seyam A.F. (1995). Modeling and simulation for control carding. Textile Res. J. 65: 638–643CrossRefGoogle Scholar
  16. 16.
    Rust J.P., Gutierrez H.M. (1994). Mathematical modeling and simulation for carding. Textile Res. J. 64:573–578CrossRefGoogle Scholar
  17. 17.
    Wibberly L.D., Roberts Jr W.W. (1997). Modeling the diffusive transport of bulk fiber mass in a card. Textile Res. J. 67: 296–308Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.BP Institute for Multiphase FlowUniversity of CambridgeCambridgeUK
  2. 2.OCIAMMathematical InstituteOxfordUK

Personalised recommendations