Journal of Engineering Mathematics

, Volume 55, Issue 1–4, pp 299–312 | Cite as

Attenuating oscillations in uncertain dynamic systems



Two basic approaches exist for the design of robust H -controllers used to optimally attenuate oscillations in uncertain dynamic systems. One of these is based on solving Riccati equations; the other approach involves a linear matrix-inequality (LMI) technique. It is shown that the Riccati equations associated with this problem, which contain additional parameters (scalings) as Lagrangian multipliers, are feasible only when the values of these parameters are within a parallelepiped whose boundaries are to be determined. A new algorithm for synthesizing a robust H -controller, using the LMI technique, is suggested. The boundaries of the admissible values of the scalings are identified. An illustrative example is considered, which concerns the optimal attenuation of oscillations of a parametrically disturbed pendulum


linear matrix inequality robust H-control uncertain dynamic system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Doyle J.C., Glover K., Khargonekar P.P et al. (1989). State-space solutions to standard H 2 and H control problems. IEEE Trans. Automat. Control. 34:831–847MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Iwasaki T., and Skelton R.E. (1994). All controllers for the general H control problem: LMI existence conditions and state space formulas. Automatica 30:1307–1317MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Gahinet P., and Apkarian P. (1994). A linear matrix inequality approach to H control. Int. J. Robust Nonlin. Contr. 4:421–448MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Gahinet P., Nemirovski A., Laub A., and Chilali M. (1995). LMI Control Toolbox For Use with MATLAB. The Math Works Inc., Natick, Massachusetts, 158 ppGoogle Scholar
  5. 5.
    Savkin A.V., and Petersen I.R. (1994). A connection between H control and the absolute stability of uncertain systems. Syst. Control Lett 23:197–203MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kogan M.M. (2000). Design of robust H -suboptimal controllers as a solution of a differential game in the presence of uncertainty: a direct and inverse problems. Automat. Rem. Contr. 61:1162–1172MATHGoogle Scholar
  7. 7.
    Doyle J.C., Synthesis of robust controllers and filters with structured plant uncertainty. In: Marcus S.I., (ed.), Proc. 22nd IEEE Conf. Decision Contr. San Antonio, TX. (1983).:pp. 109–114Google Scholar
  8. 8.
    Megretski A. (1993). Necessary and sufficient condition of stability: a multi-loop generalization of the circle criterion. IEEE Trans. Automat. Contr. 38:753–756MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Safonov M.G. L optimal sensitivity versus stability margin. In: Marcus S.I., (ed.), Proc. IEEE Conf. Decision Contr. San Antonio, TX. (1983) pp. 115–118Google Scholar
  10. 10.
    Shamma J.C. (1994). Robust stability with time-varying structured uncertainty. IEEE Trans. Automat. Contr. 39:714–724MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Apkarian P., and Gahinet P. (1995). A convex characterization of gain-scheduled H controllers. IEEE Trans. Automat. Contr. 40:853–864MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Yamada Y., and Hara S. (1998). Global optimization for H control with constant diagonal scaling. IEEE Trans. Automat. Contr. 43:191–203MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Apkarian P., and Tuan H.D. (2000). Robust control via concave minimization local and global algorithms. IEEE Trans. Automat. Contr. 45:299–305MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    El Ghaoui L., Balakrishnan V., Feron E., and Boyd S.P. On maximizing a robustness measure for structured nonlinear perturbations. In: Proc. Amer. Contr. Conf. (vol. 4) (1992) 2923–2924Google Scholar
  15. 15.
    Packard A., Zhou K., Pandey P., Leonhardson J et al. (1992). Optimal constant I/O similarity scaling for full-information and state feedback control problems. Syst. Contr. Lett. 19:271–280MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Balandin D.V., Kogan M.M. (2004). Synthesis of optimal robust H -control via convex optimization technique. Automat. Rem. Contr. 65:1099–1109MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Balandin D.V., and Kogan M.M. (2002). Robust H -control of linear uncertain systems: its limiting performance. Automat. Rem. Contr. 63:1489–1495MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Balandin D.V., and Kogan M.M. (2003). Double-ended estimates of a minimum robust H -norm for uncertain controllable systems. Automat. Rem. Contr. 64:95–103MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Balandin D.V., and Kogan M.M. (2003). On necessary conditions for feasibility of multi-parametric Riccati equations in robust H output control problem. Differential equations 39:1452–1456CrossRefMathSciNetGoogle Scholar
  20. 20.
    Balandin D.V., and Kogan M.M. (2003). Minimal supression level for external perturbations in robust H output control: a computation method. Automat. Rem. Contr. 64:1760–1768Google Scholar
  21. 21.
    Balandin D.V., and Kogan M.M. (2003). Unsolvability conditions for H -control problem. Dokl. Math. 68:148–150Google Scholar
  22. 22.
    Balandin D.V., and Kogan M.M. (2004). Optimal disturbance attenuation in uncertain controlled systems. J. Comp. Syst. Sci. Int. 43:90–97MATHGoogle Scholar
  23. 23.
    Balandin D.V., and Kogan M.M. (2004). An optimization algorithm for checking feasibility of robust H -control problem for linear time-varying uncertain systems. Int. J. Contr. 77:498–503MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Balandin D.V. (2001). Ultimate possibilities of control of linear systems and estimation of minimal H -norm. J. Comp. Syst. Sci. Int. 40:890–896MATHGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Computational Mathematics and CyberneticsNizhny Novgorod State UniversityNizhny NovgorodRussia
  2. 2.Department of MathematicsArchitecture and Civil Engineering State UniversityNizhny NovgorodRussia

Personalised recommendations