Skip to main content
Log in

Numerical investigation of three-dimensional bubble dynamics

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

This work is devoted to a numerical investigation of three-dimensional gas-vapor bubble dynamics. Bubble oscillations in ambient unbounded fluid and interaction of the bubble with different inclined solid walls are investigated numerically. The fluid is assumed inviscid and incompressible and the flow is irrotational. The boundary-integral method is used as an instrument of numerical investigation. Much attention is paid to the description of a numerical algorithm. Its conservative character is verified by control over conservation of energy. Certain characteristics of the impact jet, which often emerges during the bubble-collapse phase, are investigated numerically. These are the jet height and the direction and velocity of the jet peak. The jet-penetration coefficient is described to estimate the erosion effect on the wall. Dimensional values for different types of bubbles, cavitation bubbles and bubbles formed as a result of different charge explosions are determined

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kedrinskij V.K. (2000). Explosion Hydrodynamics. Experiment and Models. Publishing House of the Siberian Branch of RAS, Novosibirsk, 435 pp., (in Russian)

    Google Scholar 

  2. Korobkin A.A. (1997). Asymptotic theory of liquid-solid impact. Phil. Trans. R. Soc. London A335: 507–522

    Article  ADS  MathSciNet  Google Scholar 

  3. Best J.P., Kucera A. (1992). A numerical investigation of non-spherical rebounding bubbles. J. Fluid Mech. 245:137–154

    Article  MATH  ADS  Google Scholar 

  4. Benjamin T.B., Ellis A.T. (1966). The collapse of cavitation bubbles and the pressures thereby produced against solid wall. Phil. Trans. R. Soc. Lond. A260:221–240

    Article  ADS  Google Scholar 

  5. Wang Q.X. (1998). The evolution of a gas bubble near an inclined wall. Theoret. Comput. Fluid Dyn. 12:29–51

    Article  MATH  ADS  Google Scholar 

  6. Voinov O.V., Voinov V.V. (1976). On the scheme of a cavitation bubble collapse near a wall and the impact jet formation. Papers of the AS USSR N1227:63–66

    Google Scholar 

  7. Levkovskij Y.L. (1978). Structure of Cavitation Streams. Sudostroenie, Leningrad, 222 pp., (in Russian)

    Google Scholar 

  8. Blake J.R., Bouton-Stone J.M., Tong R.P. (1995). Boundary integral methods for rising, bursting and collapsing bubbles. In: Power H (eds). BE Applications in Fluid Mechanics. Mechanics Publications, Southampton, pp. 31–71

    Google Scholar 

  9. Wang Q.X., Png E.K., Tan B.H. Numerical simulation of evolution three-dimensional bubbles. In: Rood E.P (eds). Proc 22nd Symposium on Naval Hydrodynamics. Washington, Aug 9–14 (1998) pp. 282–300

  10. Wang Q.X. (2004). Numerical simulation of violent bubble motion. Phys. Fluids 16:1610–1619

    Article  Google Scholar 

  11. Best J.P. (1994). The rebound of toroidal bubbles. In: Blake J.R., Boulton-Stone J.M., Thomas N.H (eds). Bubble Dynamics and Enterface Phenomena. Kluwer Acad. Publ, Dordrecht, pp. 405–412

    Google Scholar 

  12. Blake J.R., Tomita Y., Tong R.P. (1998). The art, craft and science of modelling jet impact in a collapsing cavitational bubble. Appl. Sci. Res. 58:77–90

    Article  Google Scholar 

  13. Rogers J.C.W., Szymczak W.G. (1997). Computations of violent surface motions: Comparisons with theory and experiment. Phil. Trans. R. Soc. London A355:649–663

    ADS  MathSciNet  Google Scholar 

  14. Sussman M., Smereka P. (1997). Axisymmetric free boundary problems. J. Fluid Mech. 341:269–294

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Lawson N.J., Rudman M., Guerra A., Lion J.-L. (1999). Experimental and numerical comparisons of the break up of a large bubble. Experiments in Fluids. Springer-Verlag, Heidelberg 26:524–534

    ADS  Google Scholar 

  16. Van der Geld C.W.M. (2002). On the motion of a spherical bubble deforming near a plane wall. J. Engng. Math. 42:91–118

    Article  MathSciNet  Google Scholar 

  17. Pozrikidis C. (2002). Numerical simulation of three-dimensional bubble oscillations by a generalized vortex method. Theoret. Comput. Fluid Dyn. 16:151–169

    Article  MATH  ADS  Google Scholar 

  18. Goudov A.M., Afanasieva M.M. (1990). Modeling of spatial problems of the ideal fluid by the boundary element method. In: Terentiev A.G (eds). High Speed Hydrodynamics: Inter-University Collection of Scientific Works. The Chuvash State University, Cheboksari, pp. 15–24, (in Russian)

    Google Scholar 

  19. Afanasiev K.E., Goudov A.M. (1993). Numerical modeling of dynamics of a spatial bubble by the boundary element metrhod. Modeling in Mechanics (Novosibirsk) 7(24) No 1:11–19, (in Russian)

    Google Scholar 

  20. Terentiev A.G., Afanasiev K.E., Afanasieva M.M. (1988). Simulation of unsteady free surface flow problems by the direct boundary element method. In: Cruse Th.A (eds). Advanced Boundary Element Method IUTAM Symposium. Springer-Verlag, Heidelberg, pp. 427–434

    Google Scholar 

  21. Chahine G., Duraswami R., Rebut M. Analytical and numerical study of large large bubble/bubble and bubble/flow interaction. 19th ONR Symp. of Naval Hydrodynamics, Seoul (1992) pp. 125–144

  22. Ghassemi F. (1982). Automatic mesh generation scheme. Computing and Structures 15:613–626

    Article  MATH  Google Scholar 

  23. Babenko K.I. (1986). Principles of Numerical Analysis. Nauka, Moscow, 744 pp.(in Russian)

    Google Scholar 

  24. Grigorieva I.V. (2000). Peculiarities of numerical solution of spatial problems on dynamics of the incompressible fluid by the boundary element method. In: Zhitnikov V.P (eds). Proceedings of the International scientific conference ‘Modelling, Calculations, Designing in Conditions of Indetermination - 2000’. Ufa, Russia, pp. 176–180, (in Russian)

    Google Scholar 

  25. Trushnikov V.N. (1979). One nonlinear regulating algorithm and some of its applications. J. Higher Math. Math. Phys.19:822–829, (in Russian)

    MATH  MathSciNet  Google Scholar 

  26. Afanasiev K.E., Goudov A.M., Zakharov Yu.N. (1992). The use of iteration schemes of incomplete approximation in some problems of hydrodynamics. Modelling, Measurement & Control 46(4):27–40, B, AMSE Press

    Google Scholar 

  27. Afanasiev K.E., Samoilova T.I. (1995). Technique of using the boundary element method in problems with free boundaries. Computing Technologies Novosibirsk, 11(7):19–37 (in Russian)

    Google Scholar 

  28. Lamb H. (1947). Hydrodynamics. OGIZ, State Publ. House, Moscow Leningrad, 928 pp.

    Google Scholar 

  29. Afanasiev K.E., Grigorieva I.V. The investigation of bouyant gas bubble dinamics near an inclined wall. In: Cherny G.G et al. (eds). HSH-2002 International Summer Scientific School.High Speed Hydrodynamics. Proceedings, Cheboksary, Russia (2002) pp. 111–119

  30. Best J.P. (1988). The Kelvin impulse: application to cavitation bubble dynamics. J. Aust. Math. Soc. Ser. B30:127–146

    Google Scholar 

  31. Blake J.R., Taib B.B., Doherty G. (1986). Transient cavities near boundaries. Part 1. Rigid boundary. J. Fluid Mech. 170:31–71

    Google Scholar 

  32. Knepp R., Daily J., Hammit F. (1974). Cavitation. Mir, Moscow, (in Russian), 687 pp.

    Google Scholar 

  33. Pritchett J.W. (1971). Incompressible calculations of underwater explosion phenomena. In: Nikolaevskij V.N.(eds). Proc. Second Internat. Conf. on Numerical Methods in Fluid Dynamics. Springer, Berlin, pp. 422–428

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. E. Afanasiev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afanasiev, K.E., Grigorieva, I.V. Numerical investigation of three-dimensional bubble dynamics. J Eng Math 55, 65–80 (2006). https://doi.org/10.1007/s10665-005-9006-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-005-9006-1

Keywords

Navigation