Numerical investigation of three-dimensional bubble dynamics

  • K. E. Afanasiev
  • I. V. Grigorieva


This work is devoted to a numerical investigation of three-dimensional gas-vapor bubble dynamics. Bubble oscillations in ambient unbounded fluid and interaction of the bubble with different inclined solid walls are investigated numerically. The fluid is assumed inviscid and incompressible and the flow is irrotational. The boundary-integral method is used as an instrument of numerical investigation. Much attention is paid to the description of a numerical algorithm. Its conservative character is verified by control over conservation of energy. Certain characteristics of the impact jet, which often emerges during the bubble-collapse phase, are investigated numerically. These are the jet height and the direction and velocity of the jet peak. The jet-penetration coefficient is described to estimate the erosion effect on the wall. Dimensional values for different types of bubbles, cavitation bubbles and bubbles formed as a result of different charge explosions are determined


bubble bubble oscillation cumulative effect impact jet 


  1. 1.
    Kedrinskij V.K. (2000). Explosion Hydrodynamics. Experiment and Models. Publishing House of the Siberian Branch of RAS, Novosibirsk, 435 pp., (in Russian)Google Scholar
  2. 2.
    Korobkin A.A. (1997). Asymptotic theory of liquid-solid impact. Phil. Trans. R. Soc. London A335: 507–522CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Best J.P., Kucera A. (1992). A numerical investigation of non-spherical rebounding bubbles. J. Fluid Mech. 245:137–154MATHCrossRefADSGoogle Scholar
  4. 4.
    Benjamin T.B., Ellis A.T. (1966). The collapse of cavitation bubbles and the pressures thereby produced against solid wall. Phil. Trans. R. Soc. Lond. A260:221–240CrossRefADSGoogle Scholar
  5. 5.
    Wang Q.X. (1998). The evolution of a gas bubble near an inclined wall. Theoret. Comput. Fluid Dyn. 12:29–51CrossRefMATHADSGoogle Scholar
  6. 6.
    Voinov O.V., Voinov V.V. (1976). On the scheme of a cavitation bubble collapse near a wall and the impact jet formation. Papers of the AS USSR N1227:63–66Google Scholar
  7. 7.
    Levkovskij Y.L. (1978). Structure of Cavitation Streams. Sudostroenie, Leningrad, 222 pp., (in Russian)Google Scholar
  8. 8.
    Blake J.R., Bouton-Stone J.M., Tong R.P. (1995). Boundary integral methods for rising, bursting and collapsing bubbles. In: Power H (eds). BE Applications in Fluid Mechanics. Mechanics Publications, Southampton, pp. 31–71Google Scholar
  9. 9.
    Wang Q.X., Png E.K., Tan B.H. Numerical simulation of evolution three-dimensional bubbles. In: Rood E.P (eds). Proc 22nd Symposium on Naval Hydrodynamics. Washington, Aug 9–14 (1998) pp. 282–300Google Scholar
  10. 10.
    Wang Q.X. (2004). Numerical simulation of violent bubble motion. Phys. Fluids 16:1610–1619CrossRefGoogle Scholar
  11. 11.
    Best J.P. (1994). The rebound of toroidal bubbles. In: Blake J.R., Boulton-Stone J.M., Thomas N.H (eds). Bubble Dynamics and Enterface Phenomena. Kluwer Acad. Publ, Dordrecht, pp. 405–412Google Scholar
  12. 12.
    Blake J.R., Tomita Y., Tong R.P. (1998). The art, craft and science of modelling jet impact in a collapsing cavitational bubble. Appl. Sci. Res. 58:77–90CrossRefGoogle Scholar
  13. 13.
    Rogers J.C.W., Szymczak W.G. (1997). Computations of violent surface motions: Comparisons with theory and experiment. Phil. Trans. R. Soc. London A355:649–663ADSMathSciNetGoogle Scholar
  14. 14.
    Sussman M., Smereka P. (1997). Axisymmetric free boundary problems. J. Fluid Mech. 341:269–294CrossRefMATHADSMathSciNetGoogle Scholar
  15. 15.
    Lawson N.J., Rudman M., Guerra A., Lion J.-L. (1999). Experimental and numerical comparisons of the break up of a large bubble. Experiments in Fluids. Springer-Verlag, Heidelberg 26:524–534ADSGoogle Scholar
  16. 16.
    Van der Geld C.W.M. (2002). On the motion of a spherical bubble deforming near a plane wall. J. Engng. Math. 42:91–118CrossRefMathSciNetGoogle Scholar
  17. 17.
    Pozrikidis C. (2002). Numerical simulation of three-dimensional bubble oscillations by a generalized vortex method. Theoret. Comput. Fluid Dyn. 16:151–169CrossRefMATHADSGoogle Scholar
  18. 18.
    Goudov A.M., Afanasieva M.M. (1990). Modeling of spatial problems of the ideal fluid by the boundary element method. In: Terentiev A.G (eds). High Speed Hydrodynamics: Inter-University Collection of Scientific Works. The Chuvash State University, Cheboksari, pp. 15–24, (in Russian)Google Scholar
  19. 19.
    Afanasiev K.E., Goudov A.M. (1993). Numerical modeling of dynamics of a spatial bubble by the boundary element metrhod. Modeling in Mechanics (Novosibirsk) 7(24) No 1:11–19, (in Russian)Google Scholar
  20. 20.
    Terentiev A.G., Afanasiev K.E., Afanasieva M.M. (1988). Simulation of unsteady free surface flow problems by the direct boundary element method. In: Cruse Th.A (eds). Advanced Boundary Element Method IUTAM Symposium. Springer-Verlag, Heidelberg, pp. 427–434Google Scholar
  21. 21.
    Chahine G., Duraswami R., Rebut M. Analytical and numerical study of large large bubble/bubble and bubble/flow interaction. 19th ONR Symp. of Naval Hydrodynamics, Seoul (1992) pp. 125–144Google Scholar
  22. 22.
    Ghassemi F. (1982). Automatic mesh generation scheme. Computing and Structures 15:613–626MATHCrossRefGoogle Scholar
  23. 23.
    Babenko K.I. (1986). Principles of Numerical Analysis. Nauka, Moscow, 744 pp.(in Russian)Google Scholar
  24. 24.
    Grigorieva I.V. (2000). Peculiarities of numerical solution of spatial problems on dynamics of the incompressible fluid by the boundary element method. In: Zhitnikov V.P (eds). Proceedings of the International scientific conference ‘Modelling, Calculations, Designing in Conditions of Indetermination - 2000’. Ufa, Russia, pp. 176–180, (in Russian)Google Scholar
  25. 25.
    Trushnikov V.N. (1979). One nonlinear regulating algorithm and some of its applications. J. Higher Math. Math. Phys.19:822–829, (in Russian)MATHMathSciNetGoogle Scholar
  26. 26.
    Afanasiev K.E., Goudov A.M., Zakharov Yu.N. (1992). The use of iteration schemes of incomplete approximation in some problems of hydrodynamics. Modelling, Measurement & Control 46(4):27–40, B, AMSE PressGoogle Scholar
  27. 27.
    Afanasiev K.E., Samoilova T.I. (1995). Technique of using the boundary element method in problems with free boundaries. Computing Technologies Novosibirsk, 11(7):19–37 (in Russian)Google Scholar
  28. 28.
    Lamb H. (1947). Hydrodynamics. OGIZ, State Publ. House, Moscow Leningrad, 928 pp.Google Scholar
  29. 29.
    Afanasiev K.E., Grigorieva I.V. The investigation of bouyant gas bubble dinamics near an inclined wall. In: Cherny G.G et al. (eds). HSH-2002 International Summer Scientific School.High Speed Hydrodynamics. Proceedings, Cheboksary, Russia (2002) pp. 111–119Google Scholar
  30. 30.
    Best J.P. (1988). The Kelvin impulse: application to cavitation bubble dynamics. J. Aust. Math. Soc. Ser. B30:127–146Google Scholar
  31. 31.
    Blake J.R., Taib B.B., Doherty G. (1986). Transient cavities near boundaries. Part 1. Rigid boundary. J. Fluid Mech. 170:31–71Google Scholar
  32. 32.
    Knepp R., Daily J., Hammit F. (1974). Cavitation. Mir, Moscow, (in Russian), 687 pp.Google Scholar
  33. 33.
    Pritchett J.W. (1971). Incompressible calculations of underwater explosion phenomena. In: Nikolaevskij V.N.(eds). Proc. Second Internat. Conf. on Numerical Methods in Fluid Dynamics. Springer, Berlin, pp. 422–428Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Kemerovo State UniversityKemerovoRussia

Personalised recommendations