Journal of Engineering Mathematics

, Volume 52, Issue 1, pp 265–291 | Cite as

An assessment of plasticity theories for modeling the incrementally nonlinear behavior of granular soils

  • Claudio Tamagnini
  • Francesco Calvetti
  • Gioacchino Viggiani


The objective of this paper is to assess the predictive capability of different classes of extended plasticity theories (bounding surface plasticity, generalized plasticity and generalized tangential plasticity) in the modeling of incremental nonlinearity, which is one of the most striking features of the mechanical behavior of granular soils, occurring as a natural consequence of the particular nature of grain interactions at the microscale. To this end, the predictions of the various constitutive models considered are compared to the results of a series of Distinct Element simulations performed ad hoc. In the comparison, extensive use is made of the concept of incremental strain-response envelope in order to assess the directional properties of the material response for a given initial state and stress history.


Distinct Element Method granular materials incremental nonlinearity plasticity theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sokolowski, VV. 1965Statics of Granular MediaPergamonOxford270Google Scholar
  2. 2.
    Chen, W.F. 1976Limit Analysis and Soil PlasticityElsevierAmsterdam637Google Scholar
  3. 3.
    Roscoe, K.H., Burland, J.B. 1968On the generalised stress–strain behaviour of ‘wet’ clayHeyman, J.Leckie, F.A. eds. Engineering PlasticityCambridge Univ. PressCambridge535609Google Scholar
  4. 4.
    Schofield, A.N., Wroth, C.P. 1968Critical State Soil MechanicsMcGraw-HillLondon310Google Scholar
  5. 5.
    Gudehus, G.Darve, F.Vardoulakis, I. eds. 1984Constitutive Relations for SoilsBalkemaRotterdam497Google Scholar
  6. 6.
    Saada, A.S.Bianchini, G.F. eds. 1989Constitutive Equations for Granular Non-Cohesive SoilsBalkemaRotterdam733Google Scholar
  7. 7.
    Kolymbas, D. eds. 1993Modern Approaches to PlasticityElsevierAmsterdam780Google Scholar
  8. 8.
    Kolymbas, D. eds. 1999Constitutive Modelling of Granular MaterialsSpringerBerlin554Google Scholar
  9. 9.
    Calvetti, F., Viggiani, G., Tamagnini, C. 2003A numerical investigation of the incremental behavior of granular soilsRivista Italiana di Geotecnica371129Google Scholar
  10. 10.
    Truesdell, C.A., Noll, W. 1965The non-linear field theories of mechanicsFlügge, S. eds. Encyclopedia of Physics, vol. III/3SpringerBerlin1602Google Scholar
  11. 11.
    Owen, D.R., Williams, W.O. 1969On the time derivatives of equilibrated response functionsArch. Rat’l. Mech. Anal33288306Google Scholar
  12. 12.
    Tamagnini, C., Viggiani, G. 2002Constitutive modelling for rate-independent soils: a reviewRevue Française de G’enie Civil6933974Google Scholar
  13. 13.
    Darve, F. 1990The expression of rheological laws in incremental form and the main classes of constitutive equationsDarve, F. eds. Geomaterials: Constitutive Equations and ModellingElsevierAmsterdam123148Google Scholar
  14. 14.
    Anandarajah, A., Sobhan, K., Kuganenthira, N. 1995Incremental stress–strain behavior of a granular soil.J Geotech. Engng. ASCE1215768Google Scholar
  15. 15.
    Royis, P., Doanh, T. 1998Theoretical analysis of strain response envelopes using incrementally non-linear constitutive equationsInt. J. Num. Anal. Meth. Geomech2297132Google Scholar
  16. 16.
    Bardet, J.-P., Proubet, J. 1989Application of micromechanics to incrementally nonlinear constitutive equations for granular mediaBiarez, J.Gourves, R. eds. Proc. Powders and Grains 1989BalkemaRotterdam265273Google Scholar
  17. 17.
    Bardet, J.-P. 1993Numerical tests with discrete element methodKolymbas, D. eds. Proc. Modern Approaches to PlasticityElsevierAmsterdam179197Google Scholar
  18. 18.
    Bardet, J.-P. 1994Numerical simulations of the incremental responses of idealized granular materialsInt. J. Plasticity10879908Google Scholar
  19. 19.
    Calvetti F., di Prisco C. (1993). Fabric evolution of granular materials: a numerical approach. In: Proc. First Forum Young European Researchers. Liege, Belgium. pp. 115–120Google Scholar
  20. 20.
    Calvetti, F., Tamagnini, C., Viggiani, G. 2002On the incremental behaviour of granular soilsPande, G.N.Pietruszczak, S. eds. Proc. NUMOG VIIIBalkemaRotterdam310Google Scholar
  21. 21.
    Calvetti, F., Viggiani, G., Tamagnini, C. 2003Micromechanical inspection of constitutive modellingViggiani, C. eds. Constitutive Modelling and Analysis of Boundary Value Problems in Geotechnical EngineeringHeveliusBenevento187216Google Scholar
  22. 22.
    ITASCA1995PFC–3D User ManualItasca Consulting GroupMinneapolisGoogle Scholar
  23. 23.
    Cundall PA. (1971). A computer model for simulating progressive large scale movements in blocky rock systems. In: Proc. Symp. ISRM, Nancy, France. Rotterdam: Balkema Paper no. II–8Google Scholar
  24. 24.
    Cundall, P.A., Strack, O.D.L. 1979A discrete numerical model for granular assembliesG’eotechnique294765Google Scholar
  25. 25.
    Cundall, P.A., Hart, R.D. 1992Numerical modeling of discontinuaEngg. Comp9101113Google Scholar
  26. 26.
    Kishino, Y., Thornton, C. 1999Discrete element approachesOka, F.Tamura, T. eds. Mechanics of Granular Materials. An IntroductionBalkemaRotterdam147223Google Scholar
  27. 27.
    Tamagnini, C., Viggiani, G., Chambon, R., Desrues, J. 2000Evaluation of different strategies for the integration of hypoplastic constitutive equations: Application to the cloe modelMech. Cohesive–Frictional Mater5263289Google Scholar
  28. 28.
    Gudehus, G. 1979A comparison of some constitutive laws for soils under radially symmetric loading and unloadingWittke,  eds. 3rd Int. Conf. Num. MethGeomech. BalkemaRotterdam13091324Google Scholar
  29. 29.
    Nova, R. 1988Sinfonietta classica: an exercise on classical soil modellingSaada, Bianchini,  eds. Constitutive Equations for Granular Non-Cohesive SoilsBalkemaRotterdam501519Google Scholar
  30. 30.
    di Prisco C. (1993). Sand Anisotropy: Experimental Analysis and Mathematical Modelling. PhD thesis, Politecnico di Milano 222 pp. (in Italian)Google Scholar
  31. 31.
    Prisco, C., Nova, R., Lanier, J. 1993A mixed isotropic–kinematic hardening constitutive law for sandKolymbas, D. eds. Modern Approaches to PlasticityElsevierAmsterdam83124Google Scholar
  32. 32.
    Nova, R., Wood, D.M. 1979A constitutive model for sand in triaxial compressionInt. J. Num. Anal. Meth. Geomech3255278Google Scholar
  33. 33.
    Tamagnini, C., Castellanza, R., Nova, R. 2002A generalized backward euler algorithm for the numerical integration of an isotropic hardening elastoplastic model for mechanical and chemical degradation of bonded geomaterialsInt. J. Num. Anal. Meth. Geomech269631004Google Scholar
  34. 34.
    Simo, J.C., Hughes, T.J.R. 1997Computational InelasticitySpringerBerlinGoogle Scholar
  35. 35.
    Maier, G. 1966On associative incremental elastic-plastic constitutive modelsRend. Ist. Lombardo di Scienze e Lettere100809838(in Italian)Google Scholar
  36. 36.
    Borja, R.I., Tamagnini, C. 1998Cam–clay plasticity, part III: Extension of the infinitesimal model to include finite strainsComp. Meth. Appl. Mech. Engng1557395Google Scholar
  37. 37.
    Lagioia, R., Puzrin, A.M., Potts, D.M. 1996A new versatile expression for yield and plastic potential surfacesComput. Geotech19171191Google Scholar
  38. 38.
    Eekelen, H.A.M. 1980Isotropic yield surfaces in three dimensions for use in soil mechanicsInt. J. Numer. Anal. Meth. Geomech489101Google Scholar
  39. 39.
    Anandarajah, A., Dafalias, Y.F. 1986Bounding surface plasticity. III: Application to anisotropic cohesive soilsJ. Engng. Mech., ASCE11212921318Google Scholar
  40. 40.
    Wood, D.M. 1990Soil Behaviour and Critical State Soil MechanicsCambridge Univ. PressCambridge462Google Scholar
  41. 41.
    Nova, R. 1977On the hardening of soilsArch. Mech. Stosowanej29445458Google Scholar
  42. 42.
    Atkinson, J.H., Richardson, D., Stallebrass, S.E. 1986Effect of recent stress history on the stiffness of overconsolidated clayG’eotechnique40531540Google Scholar
  43. 43.
    Stallebrass, S.E. 1990Modelling the Effect of Recent Stress History on the Behaviour of Overconsolidated Soils PhD thesisThe City UniversityLondon164Google Scholar
  44. 44.
    Wood, D.M. 1982Laboratory investigations of the behaviour of soils under cyclic loading: a reviewPande, G.N.Zienkiewicz, O.C. eds. Soil Mechanics – Cyclic and Transient LoadsWileyChichester513582Google Scholar
  45. 45.
    Dafalias, Y.F., Herrmann, L.R. 1982Bounding surface formulation of soil plasticityPande, G.N.Zienkiewicz, O.C. eds. Soil Mechanics – Cyclic and Transient LoadsWileyChichester253283Google Scholar
  46. 46.
    Dafalias, Y.F. 1986Bounding surface plasticity. I: Mathematical foundation and hypoplasticityJ. Engng. Mech. ASCE112966987Google Scholar
  47. 47.
    Dafalias, Y.F., Herrmann, L.R. 1986Bounding surface plasticity. II: Application to isotropic cohesive soilsJ. Engng. Mech., ASCE11212631291Google Scholar
  48. 48.
    Pastor, M., Zienkiewicz, O.C., Chan, A.H.C. 1990Generalized plasticity and the modelling of soil behaviourInt. J. Numer. Anal. Meth. Geomech14151190Google Scholar
  49. 49.
    Zienkiewicz, O.C., Mroz, Z. 1984Generalized plasticity formulation and applications to geomechanicsDesai, C.S.Gallagher, R.H. eds. Mechanics of Engineering MaterialsWileyChichester655679Google Scholar
  50. 50.
    Papamichos, E., Vardoulakis, I. 1995Shear band formation in sand according to non–coaxial plasticity modelG’eotechnique4649661Google Scholar
  51. 51.
    Kolymbas, D. 1991An outline of hypoplasticityArch. Appl. Mech61143151Google Scholar
  52. 52.
    Tamagnini, C., Viggiani, G., Chambon, R. 2000A review of two different approaches to hypoplasticityKolymbas, D. eds. Constitutive Modelling of Granular MaterialsSpringerBerlin107145Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Claudio Tamagnini
    • 1
  • Francesco Calvetti
    • 2
  • Gioacchino Viggiani
    • 3
  1. 1.Dipartimento di Ingegneria Civile e AmbientaleUniversitá di PerugiaItaly
  2. 2.Dipartimento di Ingegneria StrutturalePolitecnico di MilanoItaly
  3. 3.Laboratoire 3SUJF–INPG–CNRSGrenobleFrance

Personalised recommendations