Contamination, distribution, and risk assessment of antibiotics in the urban surface water of the Pearl River in Guangzhou, South China

Abstract

To assess the impact of antibiotic pollution to the ecosystem in urban water, the occurrence, seasonal, and spatial distributions, potential sources, and ecological risks of 18 targeted antibiotics in urban river, Pearl River located in Guangzhou city, were investigated. Surface water samples were sampled from 24 sites in Guangzhou center of Pearl River during dry and wet seasons. The results indicated that the concentrations of antibiotic residues were at the nanogram per liter level, except sulfamethazine (SMD) (μg/L). Sulfonamides (SAs) were the dominant antibiotics, contributing 60.4–65.0% to the total antibiotics. The concentrations of SAs, fluoroquinolones (QUs), macrolides (MLs), tetracyclines (TCs), and lincosamides (LCs) were higher in dry season than those in wet season at most sampling sites, which possibly resulted from the dilution effect of heavy rainfall. The concentrations of the antibiotic residues in Guangzhou were comparable or higher than other urban rivers. The calculation on risk quotients indicated that erythromycin-H2O (ETM-H2O) and tetracycline (TC) were of high risks. The source identification by the Pearson correlation analysis and principal component analysis-multiple linear regression (PCA-MLR) method suggested that municipal wastewater treatment plants were primary sources of antibiotics. These results would provide important information for the environmental protect.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Arenas-Sánchez, A., Rico, A., Rivas-Tabares, D., Blanco, A., Garcia-Doncel, P., Romero-Salas, A., et al. (2019). Identification of contaminants of concern in the upper Tagus river basin (central Spain). Part 2: spatio-temporal analysis and ecological risk assessment. Science of the Total Environment, 667, 222–233.

    Google Scholar 

  2. Białk-Bielińska, A., Stolte, S., Arning, J., Uebers, U., Böschen, A., Stepnowski, P., & Matzke, M. (2011). Ecotoxicity evaluation of selected sulfonamides. Chemosphere, 85(6), 928–933.

    Google Scholar 

  3. Bound, J. P., & Voulvoulis, N. (2004). Pharmaceuticals in the aquatic environment––a comparison of risk assessment strategies. Chemosphere, 56(11), 1143–1155.

    CAS  Google Scholar 

  4. Burke, V., Richter, D., Greskowiak, J., Mehrtens, A., Schulz, L., & Massmann, G. (2016). Occurrence of antibiotics in surface and groundwater of a drinking water catchment area in Germany. Water Environment Research, 88(7), 652–659.

    CAS  Google Scholar 

  5. Chen, H., Li, X., & Zhu, S. (2012). Occurrence and distribution of selected pharmaceuticals and personal care products in aquatic environments: a comparative study of regions in China with different urbanization levels. Environmental Science and Pollution Research, 19(6), 2381–2389.

    CAS  Google Scholar 

  6. Chen, C.-E., Zhang, H., Ying, G.-G., & Jones, K. C. (2013a). Evidence and recommendations to support the use of a novel passive water sampler to quantify antibiotics in wastewaters. Environmental Science & Technology, 47(23), 13587–13593.

    CAS  Google Scholar 

  7. Chen, Y., Leung, K. S.-Y., Wong, J. W.-C., & Selvam, A. (2013b). Preliminary occurrence studies of antibiotic residues in Hong Kong and Pearl River Delta. Environmental Monitoring and Assessment, 185(1), 745–754.

    CAS  Google Scholar 

  8. Chen, C.-E., Chen, W., Ying, G.-G., Jones, K. C., & Zhang, H. (2015). In situ measurement of solution concentrations and fluxes of sulfonamides and trimethoprim antibiotics in soils using o-DGT. Talanta, 132, 902–908.

    CAS  Google Scholar 

  9. Chen, K.-L., Liu, L.-C., & Chen, W.-R. (2017). Adsorption of sulfamethoxazole and sulfapyridine antibiotics in high organic content soils. Environmental Pollution, 231, 1163–1171.

    CAS  Google Scholar 

  10. Chen, L., Lang, H., Liu, F., Jin, S., & Yan, T. (2018). Presence of antibiotics in shallow groundwater in the Northern and Southwestern Regions of China. Groundwater, 56(3), 451–457.

    CAS  Google Scholar 

  11. Chen, H., Bai, X., Li, Y., Jing, L., Chen, R., & Teng, Y. (2019). Characterization and source-tracking of antibiotic resistomes in the sediments of a peri-urban river. Science of The Total Environment, 679, 88–96.

    CAS  Google Scholar 

  12. Deng, W., Li, N., Zheng, H., & Lin, H. (2016). Occurrence and risk assessment of antibiotics in river water in Hong Kong. Ecotoxicology and Environmental Safety, 125, 121–127.

    CAS  Google Scholar 

  13. Deng, W.-J., Li, N., & Ying, G.-G. (2018). Antibiotic distribution, risk assessment, and microbial diversity in river water and sediment in Hong Kong. Environmental Geochemistry and Health, 40(5), 2191–2203.

    CAS  Google Scholar 

  14. Díaz-Cruz, M. S., López de Alda, M. J., & Barceló, D. (2003). Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. TrAC Trends in Analytical Chemistry, 22(6), 340–351.

    Google Scholar 

  15. Dinh, Q., Moreau-Guigon, E., Labadie, P., Alliot, F., Teil, M.-J., Blanchard, M., Eurin, J., & Chevreuil, M. (2017). Fate of antibiotics from hospital and domestic sources in a sewage network. Science of The Total Environment, 575, 758–766.

    Google Scholar 

  16. Dong, D., Zhang, L., Liu, S., Guo, Z., & Hua, X. (2016). Antibiotics in water and sediments from Liao River in Jilin Province, China: occurrence, distribution, and risk assessment. Environmental Earth Sciences, 75(16), 1202.

    Google Scholar 

  17. Feng, Y., Qing, W., Kong, L., Li, H., Wu, D., Fan, Y., Lee, P. H., & Shih, K. (2019). Factors and mechanisms that influence the reactivity of trivalent copper: a novel oxidant for selective degradation of antibiotics. Water Research, 149, 1–8.

    CAS  Google Scholar 

  18. He, S., Dong, D., Zhang, X., Sun, C., Wang, C., Hua, X., Zhang, L., & Guo, Z. (2018). Occurrence and ecological risk assessment of 22 emerging contaminants in the Jilin Songhua River (Northeast China). Environmental Science and Pollution Research, 25(24), 24003–24012.

    CAS  Google Scholar 

  19. He, K., Hain, E., Timm, A., Tarnowski, M., & Blaney, L. (2019). Occurrence of antibiotics, estrogenic hormones, and UV-filters in water, sediment, and oyster tissue from the Chesapeake Bay. Science of The Total Environment, 650, 3101–3109.

    CAS  Google Scholar 

  20. Hernando, M., Mezcua, M., Fernandezalba, A., & Barcelo, D. (2006). Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 69(2), 334–342.

    CAS  Google Scholar 

  21. Hu, Y., Yan, X., Shen, Y., Di, M., & Wang, J. (2018). Antibiotics in surface water and sediments from Hanjiang River, Central China: Occurrence, behavior and risk assessment. Ecotoxicology and Environmental Safety, 157, 150–158.

    CAS  Google Scholar 

  22. Huang, C. H., Renew, J. E., Smeby, K. L., Pinkston, K., & Sedlak, D. L. (2011). Assessment of potential antibiotic contaminants in water and preliminary occurrence analysis. Journal of Contemporary Water Research & Education, 120(1), 30–40.

    Google Scholar 

  23. Huang, Y. H., Liu, Y., Du, P. P., Zeng, L. J., Mo, C. H., Li, Y. W., et al. (2019). Occurrence and distribution of antibiotics and antibiotic resistant genes in water and sediments of urban rivers with black-odor water in Guangzhou, South China. Science of The Total Environment, 670, 170–180.

    CAS  Google Scholar 

  24. Jiang, L., Hu, X., Yin, D., Zhang, H., & Yu, Z. (2011). Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China. Chemosphere, 82(6), 822–828.

    CAS  Google Scholar 

  25. Jiang, J. J., Lee, C. L., Brimblecombe, P., Vydrova, L., & Fang, M. D. (2016). Source contributions and mass loadings for chemicals of emerging concern: chemometric application of pharmaco-signature in different aquatic systems. Environmental Pollution, 208, 79–86.

    CAS  Google Scholar 

  26. Khetan, S. K., & Collins, T. J. (2007). Human pharmaceuticals in the aquatic environment: a challenge to green chemistry. ChemInform, 38(36).

  27. Kim, S. C., & Carlson, K. (2007). Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices. Environmental Science and Technology, 41(1), 50–57.

    CAS  Google Scholar 

  28. Kümmerer, K. (2009). Antibiotics in the aquatic environment – a review – Part I. Chemosphere, 75(4), 417–434.

    Google Scholar 

  29. Lee, Y.-J., Lee, S.-E., Lee, D. S., & Kim, Y.-H. (2008). Risk assessment of human antibiotics in Korean aquatic environment. Environmental Toxicology and Pharmacology, 26(2), 216–221.

    CAS  Google Scholar 

  30. Lekunberri, I., Villagrasa, M., Balcázar, J. L., & Borrego, C. M. (2017). Contribution of bacteriophage and plasmid DNA to the mobilization of antibiotic resistance genes in a river receiving treated wastewater discharges. Science of The Total Environment, 601-602, 206–209.

    CAS  Google Scholar 

  31. Li, W. H., Tian, Y. Z., Shi, G. L., Guo, C. S., Li, X., & Feng, Y. C. (2012). Concentrations and sources of PAHs in surface sediments of the Fenhe reservoir and watershed, China. Ecotoxicology and Environmental Safety, 75(1), 198–206.

    CAS  Google Scholar 

  32. Li, A., Chen, L., Zhang, Y., Tao, Y., Xie, H., Li, S., Sun, W., Pan, J., He, Z., Mai, C., Fan, Y., Xian, H., Zhang, Z., & Wen, D. (2018). Occurrence and distribution of antibiotic resistance genes in the sediments of drinking water sources, urban rivers, and coastal areas in Zhuhai, China. Environmental Science and Pollution Research, 25(26), 26209–26217.

    CAS  Google Scholar 

  33. Liang, X. M., Nie, X. P., & Shi, Z. (2013). Preliminary studies on the occurrence of antibiotic resistance genes in typical aquaculture area of the Pearl River Estuary. Journal of Environmental Sciences (China)., 34(10), 4073–4080.

    Google Scholar 

  34. Liu, S., Zhao, H., Lehmler, H.-J., Cai, X., & Chen, J. (2017). Antibiotic pollution in marine food webs in Laizhou Bay, North China: trophodynamics and human exposure implication. Environmental Science & Technology, 51(4), 2392–2400.

    CAS  Google Scholar 

  35. Liu, J.-J., Diao, Z.-H., Liu, C.-M., Jiang, D., Kong, L.-J., & Xu, X. R. (2018a). Synergistic reduction of copper (II) and oxidation of norfloxacin over a novel sewage sludge-derived char-based catalyst: performance, fate and mechanism. Journal of Cleaner Production, 182, 794–804.

    CAS  Google Scholar 

  36. Liu, X., Lu, S., Guo, W., Xi, B., & Wang, W. (2018b). Antibiotics in the aquatic environments: a review of lakes, China. Science of The Total Environment, 627, 1195–1208.

    CAS  Google Scholar 

  37. MacKay, A. A., & Canterbury, B. (2005). Oxytetracycline sorption to organic matter by metal-bridging. Journal of Environmental Quality, 34(6), 1964–1971.

    CAS  Google Scholar 

  38. Marathe, N. P., Pal, C., Gaikwad, S. S., Jonsson, V., Kristiansson, E., & Larsson, D. G. J. (2017). Untreated urban waste contaminates Indian river sediments with resistance genes to last resort antibiotics. Water Research, 124, 388–397.

    CAS  Google Scholar 

  39. Murata, A., Takada, H., Mutoh, K., Hosoda, H., Harada, A., & Nakada, N. (2011). Nationwide monitoring of selected antibiotics: distribution and sources of sulfonamides, trimethoprim, and macrolides in Japanese rivers. Science of The Total Environment, 409(24), 5305–5312.

    CAS  Google Scholar 

  40. Niu, Z.-G., Zhang, K., & Zhang, Y. (2016). Occurrence and distribution of antibiotic resistance genes in the coastal area of the Bohai Bay, China. Marine Pollution Bulletin, 107(1), 245–250.

    CAS  Google Scholar 

  41. Park, S., & Choi, K. (2008). Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems. Ecotoxicology, 17(6), 526–538.

    CAS  Google Scholar 

  42. Qiao, M., Ying, G.-G., Singer, A. C., & Zhu, Y.-G. (2018). Review of antibiotic resistance in China and its environment. Environment International, 110, 160–172.

    CAS  Google Scholar 

  43. Reardon, S. (2014). Antibiotic resistance sweeping developing world. Nature, 509(7499), 141–142.

    CAS  Google Scholar 

  44. Rodriguez-Mozaz, S., Chamorro, S., Marti, E., Huerta, B., Gros, M., Sànchez-Melsió, A., Borrego, C. M., Barceló, D., & Balcázar, J. L. (2015). Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Research, 69, 234–242.

    CAS  Google Scholar 

  45. Sarmah, A. K., Meyer, M. T., & Boxall, A. B. A. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65(5), 725–759.

    CAS  Google Scholar 

  46. Selvam, A., Kwok, K., Chen, Y., Cheung, A., Leung, K. S. Y., & Wong, J. W. C. (2017). Influence of livestock activities on residue antibiotic levels of rivers in Hong Kong. Environmental Science and Pollution Research, 24(10), 9058–9066.

    CAS  Google Scholar 

  47. Spielmeyer, A., Höper, H., & Hamscher, G. (2017). Long-term monitoring of sulfonamide leaching from manure amended soil into groundwater. Chemosphere, 177, 232–238.

    CAS  Google Scholar 

  48. Stepanić, V., Žiher, D., Gabelica-Marković, V., Jelić, D., Nunhuck, S., Valko, K., & Koštrun, S. (2012). Physicochemical profile of macrolides and their comparison with small molecules. European Journal of Medicinal Chemistry, 47, 462–472.

    Google Scholar 

  49. Tang, J., Shi, T., Wu, X., Cao, H., Li, X., Hua, R., Tang, F., & Yue, Y. (2015). The occurrence and distribution of antibiotics in Lake Chaohu, China: seasonal variation, potential source and risk assessment. Chemosphere, 122, 154–161.

    CAS  Google Scholar 

  50. Thiele-Bruhn, S. (2003). Pharmaceutical antibiotic compounds in soils – a review. Journal of Plant Nutrition and Soil Science, 166(2), 145–167.

    CAS  Google Scholar 

  51. Van Boeckel, T. P., Gandra, S., Ashok, A., Caudron, Q., Grenfell, B. T., Levin, S. A., & Laxminarayan, R. (2014). Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. The Lancet Infectious Diseases, 14(8), 742–750.

    Google Scholar 

  52. Van Rennings, L., Von Münchhausen, C., Ottilie, H., Hartmann, M., Merle, R., Honscha, W., et al. (2015). Cross-sectional study on antibiotic usage in pigs in Germany. PLoS ONE, 10(3), e0119114.

    Google Scholar 

  53. Wammer, K. H., Korte, A. R., Lundeen, R. A., Sundberg, J. E., McNeill, K., & Arnold, W. A. (2013). Direct photochemistry of three fluoroquinolone antibacterials: Norfloxacin, ofloxacin, and enrofloxacin. Water Research, 47(1), 439–448.

    CAS  Google Scholar 

  54. Wang, B., Cao, M., Zhu, H., Chen, J., Wang, L., Liu, G., Gu, X., & Lu, X. (2013). Distribution of perfluorinated compounds in surface water from Hanjiang River in Wuhan, China. Chemosphere, 93(3), 468–473.

    CAS  Google Scholar 

  55. Wei, X., Liu, Y., Zhou, Z., Ou, H., Zhang, J., Zhao, J., et al. (2018). Occurrence and removal of antibiotics from wastewater of typical emission sources in Guangzhou China. Journal of South China Normal University (Natural Science Edition)., 50(1), 11–20.

    Google Scholar 

  56. Weng, X., Owens, G., & Chen, Z. (2020). Synergetic adsorption and Fenton-like oxidation for simultaneous removal of ofloxacin and enrofloxacin using green synthesized Fe NPs. Chemical Engineering Journal, 382, 122871.

    CAS  Google Scholar 

  57. Xu, J., Xu, Y., Wang, H., Guo, C., Qiu, H., He, Y., Zhang, Y., Li, X., & Meng, W. (2015). Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. Chemosphere, 119, 1379–1385.

    CAS  Google Scholar 

  58. Xue, B., Zhang, R., Wang, Y., Liu, X., Li, J., & Zhang, G. (2013). Antibiotic contamination in a typical developing city in south China: occurrence and ecological risks in the Yongjiang River impacted by tributary discharge and anthropogenic activities. Ecotoxicology and Environmental Safety, 92, 229–236.

    CAS  Google Scholar 

  59. Yan, C., Yang, Y., Zhou, J., Liu, M., Nie, M., Shi, H., & Gu, L. (2013). Antibiotics in the surface water of the Yangtze Estuary: occurrence, distribution and risk assessment. Environmental Pollution, 175, 22–29.

    CAS  Google Scholar 

  60. Yan, M., Xu, C., Huang, Y., Nie, H., & Wang, J. (2018). Tetracyclines, sulfonamides and quinolones and their corresponding resistance genes in the Three Gorges Reservoir, China. Science of The Total Environment, 631-632, 840–848.

    CAS  Google Scholar 

  61. Yang, J.-F., Ying, G.-G., Zhao, J.-L., Tao, R., Su, H.-C., & Liu, Y.-S. (2011). Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China. Journal of Environmental Science and Health, Part B, 46(3), 272–280.

    Google Scholar 

  62. Yang, W., Tang, Z., Zhou, F., Zhang, W., & Song, L. (2013). Toxicity studies of tetracycline on microcystis aeruginosa and Selenastrum capricornutum. Environmental Toxicology and Pharmacology, 35(2), 320–324.

    CAS  Google Scholar 

  63. Yu, Y., Zhu, X., Wu, G., Wang, C., & Yuan, X. (2019). Analysis of antibiotic resistance of Escherichia coli isolated from the Yitong River in North-east China. Frontiers of Environmental Science & Engineering, 13(3), 39.

    CAS  Google Scholar 

  64. Zhang, Q., Jia, A., Wan, Y., Liu, H., Wang, K., Peng, H., Dong, Z., & Hu, J. (2014). Occurrences of three classes of antibiotics in a natural river basin: association with antibiotic-resistant Escherichia coli. Environmental Science & Technology, 48(24), 14317–14325.

    CAS  Google Scholar 

  65. Zhang, Q.-Q., Ying, G.-G., Pan, C.-G., Liu, Y.-S., & Zhao, J.-L. (2015). Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environmental Science & Technology, 49(11), 6772–6782.

    CAS  Google Scholar 

  66. Zhang, X. P., Zhang, Y. Y., Mai, L., Liu, L. Y., Bao, L. J., & Zeng, E. Y. (2020). Selected antibiotics and current-use pesticides in riverine runoff of an urbanized river system in association with anthropogenic stresses. Science of The Total Environment, 739, 140004.

    CAS  Google Scholar 

  67. Zhao, H., Cao, Z., Liu, X., Zhan, Y., Zhang, J., Xiao, X., Yang, Y., Zhou, J., & Xu, J. (2017). Seasonal variation, flux estimation, and source analysis of dissolved emerging organic contaminants in the Yangtze Estuary, China. Marine Pollution Bulletin, 125(1-2), 208–215.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Professor Jingwei Xu (Changchun Institute of Applied Chemistry, Chinese Academy of Sciences) for the contribution to this article.

Funding

This research was supported by National Natural Science Foundation of China (No. 21777150), Guangdong Provincial Key R&D Programme (2020B1111350002) and Guangzhou Science and Technology Project (No. 201803030042).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yumei Song.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 70 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhao, Y., Liu, S. et al. Contamination, distribution, and risk assessment of antibiotics in the urban surface water of the Pearl River in Guangzhou, South China. Environ Monit Assess 193, 98 (2021). https://doi.org/10.1007/s10661-021-08887-5

Download citation

Keywords

  • Antibiotics
  • Ecological risk assessment
  • Urban River
  • Pearl River