The environmental importance of iron speciation in soils: evaluation of classic methodologies

Abstract

Iron is an essential mineral and one of the most abundant in soils, presenting itself in the environment as ferrous and ferric ions. As each oxidation state of iron has a different role in the environment, its speciation in environmental studies is important. The determination of ferrous iron received great attention from soil chemists because of its important role in agriculture, in redox processes, and as an electron acceptor in the catalysis of organic matter. Methodologies with the use of colorimetric reagents to determine ferrous iron are divergent and not very clear. In this study, we compared two colorimetric reagents (1,10-phenanthroline and ferrozine) to determine the total concentration of iron, ferrous and ferric ions in soil, using simple and low-cost methodologies. The determination of ferrous and total iron with 1,10-phenanthroline colorimetric reagent, following published instructions, did not correlate with ferrozine method, presenting an erroneous quantification. After neutralizing the extract of 1,10-phenanthroline with NaOH, both colorimetric methods allowed to quantify with precision and high yield the amount of ferrous and total iron extracted from the soil. The oxidation states of iron have a different contribution and importance to the environment. In this sense, the improvement of a widely used methodology is crucial for the better study of iron speciation in soil.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Achterberg, E. P., Holland, T. W., Bowie, A. R., Mantoura, R. F. C., & Worsfold, P. J. (2001). Determination of iron in seawater. Analytica Chimica Acta, 442(1), 1–14.

    CAS  Google Scholar 

  2. Braunschweig, J., Bosch, J., Heister, K., Kuebeck, C., & Meckenstock, R. U. (2012). Reevaluation of colorimetric iron determination methods commonly used in geomicrobiology. Journal of Microbiological Methods, 89(1), 41–48.

    CAS  Google Scholar 

  3. Coey, J. M. D. (1988). Magnetic properties of iron in soil iron oxides and clay minerals. In J. W. Stucki, B. A. Goodman, & U. Schwertmann (Eds.), Iron in soils and clay minerals (pp. 397–466). Dordrecht: Springer.

    Google Scholar 

  4. Colombo, C., Palumbo, G., He, J., Pinton, R., & Cesco, S. (2014). Review on iron availability in soil: Interaction of Fe minerals, plants, and microbes. Journal of Soils and Sediments, 14, 538–548.

    CAS  Google Scholar 

  5. Emsens, W., Aggenbach, C. J. S., Schoutens, K., Smolders, A. J. P., Zak, D., & van Diggelen, R. (2016). Soil iron content as a predictor of carbon and nutrient mobilization in rewetted fens. PLoS One, 11, e0153166.

    Google Scholar 

  6. Eskandari, H. (2011). The importance of iron (Fe) in plant products and mechanism of its uptake by plants. Journal of Applied Environmental and Biological Sciences, 1(10), 448–452.

    Google Scholar 

  7. Freitas, P. C., Carvalho, R. M., Silva, J. S. A., Prado, T., Duarte, E. R., Frescura, V. L. A., & Chaves, E. S. (2015). Extração assistida por ultrassom para determinação colorimétrica de ferro em solo: uma comparação com espectrometria de massa com plasma indutivamente acoplado. Química Nova, 38(4), 570–574.

    Google Scholar 

  8. Fortune, W. B., & Mellon, M. G. (1938). Determination of iron with o-phenanthroline: A spectrophotometric study. Industrial and Engineering Chemistry, Analytical Edition, 10(2), 60–64.

    CAS  Google Scholar 

  9. Gabriel, G. V. M., Oliveira, L. C., Barros, D. J., Bento, M. S., Neu, V., Toppa, R. H., Carmo, J. B., & Navarrete, A. A. (2020). Methane emission suppression in flooded soil from Amazonia. Chemosphere, 250, 126263.

    CAS  Google Scholar 

  10. Gustafsson, J. P. (2019). Visual MINTEQ, v. 3.1. Stockholm: Royal Institute of Technology, Div. of Land and Water Resources Engineering Available at: https://vminteq.lwr.kth.se.

    Google Scholar 

  11. Hage, D. S., & Carr, J. D. (2012). Química analítica e análise quantitativa (pp. 101–103). São Paulo: Pearson Prentice Hall.

    Google Scholar 

  12. Harvey, A. E., Smart, J. A., & Amis, E. S. (1955). Simultaneous spectrophotometric determination of iron(II) and total iron with 1,l0-phenanthroline. Analytical Chemistry, 27(1), 26–29.

    CAS  Google Scholar 

  13. Heron, G., Crouzet, C., Bourg, A. C. M., & Christensent, T. H. (1994). Speciation of Fe(II) and Fe(III) in contaminated aquifer sediments using chemical extraction techniques. Environmental Science & Technology, 28(9), 1698–1705.

    CAS  Google Scholar 

  14. Hoffmann, P. (2005). Speciation of iron. In R. Cornelis, J. Caruso, H. Crews, & K. Heumann (Eds.), Handbook of elemental speciation II - Species in the environment, food, medicine and occupational health (pp. 200–217). Hoboken: John Wiley & Sons.

    Google Scholar 

  15. Huang, W., & Hall, S. J. (2017). Optimized high-throughput methods for quantifying iron biogeochemical dynamics in soil. Geoderma, 306(15), 67–72.

    CAS  Google Scholar 

  16. Hummel, F. C., & Willard, H. H. (1938). Determination of iron in biological materials. Industrial and Engineering Chemistry, Analytical Edition, 10(1), 13–15.

    CAS  Google Scholar 

  17. Jeitner, T. M. (2014). Optimized ferrozine-based assay for dissolved iron. Analytical Biochemistry, 454(1), 36–37.

    CAS  Google Scholar 

  18. Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (pp. 310–313). Boca Raton: CRC Press LLC.

    Google Scholar 

  19. Kot, A., & Namiesńik, J. (2000). The role of speciation in analytical chemistry. Trends in Analytical Chemistry, 19(2–3), 69–79.

    CAS  Google Scholar 

  20. Lovley, D. R., & Phillips, E. J. P. (1986a). Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Applied and Environmental Microbiology, 51(4), 683–689.

    CAS  Google Scholar 

  21. Lovley, D. R., & Phillips, E. J. P. (1986b). Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac river. Applied and Environmental Microbiology, 52(4), 751–757.

    CAS  Google Scholar 

  22. Lovley, D. R., & Phillips, E. J. P. (1987). Rapid assay for microbially reducible ferric iron in aquatic sediments. Applied and Environmental Microbiology, 53(7), 1536–1540.

    CAS  Google Scholar 

  23. Lovley, D. R. (1991). Dissimilatory Fe(III) and Mn(IV) reduction. Microbiological Reviews, 55(2), 259–287.

    CAS  Google Scholar 

  24. Luo, C., Hwang, J., Puno, T., & Tsai, H. (1978). Determination of trace iron(II) in the presence of iron(III). Journal of the Chinese Chemical Society, 25(3), 119–123.

    CAS  Google Scholar 

  25. McKnight, D. M., Bencala, K. E., Zellweger, G. W., Aiken, G. R., Feder, G. L., & Thorn, K. A. (1992). Sorption of dissolved organic-carbon by hydrous aluminum and iron-oxides occurring at the confluence of deer creek with the Snake River, Summit County, Colorado. Environmental Science & Technology, 26(7), 1388–1396.

    CAS  Google Scholar 

  26. Moore, T. R., Souza, W., & Koprivnjak, J. F. (1992). Controls on the sorption of dissolved organic carbon by soils. Soil Science, 154(2), 120–129.

    CAS  Google Scholar 

  27. Neu, V., Krusche, A. V., & Ferraz, J. (2017). Dinâmica do carbono orgânico dissolvido na solução do solo sob diferentes coberturas vegetais na Amazônia Central. In S. S. Vasconcelos, M. L. P. Ruivo, & A. M. M. Lima (Eds.), Amazônia em tempo: Impactos do uso da terra em diferentes escalas (pp. 1–504). Belém: Universidade Federal do Pará: Museu Paraense Emílio Goeldi: Embrapa Amazônia Oriental.

    Google Scholar 

  28. Pehkonen, S. (1995). Determination of the oxidation states of iron in natural waters. Analyst, 120(11), 2655–2663.

    CAS  Google Scholar 

  29. Porsch, K., & Kappler, A. (2011). FeII oxidation by molecular O2 during HCl extraction. Environmental Chemistry, 8, 190–197.

    CAS  Google Scholar 

  30. Quesada, C. A., Lloyd, J., Anderson, L. O., Fyllas, N. M., Schwarz, M., & Czimczik, C. I. (2011). Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences, 8, 1415–1440.

    CAS  Google Scholar 

  31. Rout, G. R., & Sahoo, S. (2015). Role of iron in plant growth and metabolism. Reviews in Agricultural Science, 3, 1–24.

    Google Scholar 

  32. Schilt, A. A. (1969). Analytical applications of 1,10-phenanthroline and related compounds (pp. 1–9). London: Pergamon.

    Google Scholar 

  33. Schnell, S., Ratering, S., & Jansen, K. (1998). Simultaneous determination of iron(III), iron(II), and manganese(II) in environmental samples by ion chromatography. Environmental Science & Technology, 32(10), 1530–1537.

    CAS  Google Scholar 

  34. Sørensen, J. (1982). Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate. Applied and Environmental Microbiology, 43(2), 319–324.

    Google Scholar 

  35. Stookey, L. L. (1970). Ferrozine - A new spectrophotometric reagent for iron. Analytical Chemistry, 42(7), 779–781.

    CAS  Google Scholar 

  36. Tamura, H., Goto, K., Yotsuyanagi, T., & Nagayama, M. (1974). Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III). Talanta, 21(4), 314–318.

    CAS  Google Scholar 

  37. Tarafder, P. K., & Thakur, R. (2013). An optimised 1,10-phenanthroline method for the determination of ferrous and ferric oxides in silicate rocks, soils and minerals. Geostandards and Geoanalytical Research, 37(2), 155–168.

    CAS  Google Scholar 

  38. Tavakoli, M. T., Chenari, A. I., Rezaie, M., Tavakoli, A., Shahsavari, M., & Mousavi, S. R. (2014). The importance of micronutrients in agricultural production. Advances in Environmental Biology, 8(10), 31–35.

    CAS  Google Scholar 

  39. USDA Soil Taxonomy. (1999). A basic system of soil classification for making and interpreting soil surveys. Agricultural Handbook (Vol. 436, 2nd ed.). Washington, DC: United States Department of Agriculture, Natural Resources Conservation Service, Soil Taxonomy.

    Google Scholar 

  40. USEPA. (2003). United State Environmental Protection Agency. Ecological soil screening level for iron, Interim final. OSWER Directive 9285 (pp. 7–69). Washington, DC: U.S. Environmental Protection Agency.

    Google Scholar 

  41. Ure, A. M. (1990). Trace elements in soil: Their determination and speciation. Fresenius' Journal of Analytical Chemistry, 337, 577–581.

    CAS  Google Scholar 

  42. Xia, L., Wu, Y., Jiang, Z., Li, S., & Hu, B. (2003). Speciation of Fe(III) and Fe(II) in water samples by liquid–liquid extraction combined with low-temperature electrothermal vaporization (ETV) ICP-AES. International Journal of Environmental Analytical Chemistry, 83(11), 953–962.

    Google Scholar 

  43. Wallmann, K., Hennies, K., König, I., Petersen, W., & Knauth, H. (1993). New procedure for determining reactive Fe(III) and Fe(II) minerals in sediments. Limnology and Oceanography, 38(8), 1803–1812.

    CAS  Google Scholar 

Download references

Code availability

Not applicable.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 (process no. 88882.306808/2018-01) and pro-equipment project (proposal no. 189683) CAPES no. 11/2014 and was supported by grants #2013/50940-0, #2016/10796-5, and #2016/16687-3, São Paulo Research Foundation (FAPESP). AAN was supported by grant #2017/03575–5, FAPESP.

Author information

Affiliations

Authors

Contributions

GVMG performed the experiments and wrote the manuscript. LMP contributed in the performance of the experiments, performed the statistics, participated on the discussion, and reviewed and edited the manuscript. LMTR performed the Visual MINTEQ analysis and discussion and prepared Fig. 3. AAN collected the soil samples and reviewed and edited the manuscript. WGB reviewed and edited the manuscript. JBC and LCO reviewed and edited the manuscript and contributed with the resources. All authors approved the final version of the manuscript for publication.

Corresponding author

Correspondence to Luciana Camargo de Oliveira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 142 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Mello Gabriel, G.V., Pitombo, L.M., Rosa, L.M.T. et al. The environmental importance of iron speciation in soils: evaluation of classic methodologies. Environ Monit Assess 193, 63 (2021). https://doi.org/10.1007/s10661-021-08874-w

Download citation

Keywords

  • Fe(II) quantification
  • Ferrous iron
  • Ferrozine
  • 1,10-Phenanthroline