Skip to main content

Advertisement

Log in

The environmental importance of iron speciation in soils: evaluation of classic methodologies

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Iron is an essential mineral and one of the most abundant in soils, presenting itself in the environment as ferrous and ferric ions. As each oxidation state of iron has a different role in the environment, its speciation in environmental studies is important. The determination of ferrous iron received great attention from soil chemists because of its important role in agriculture, in redox processes, and as an electron acceptor in the catalysis of organic matter. Methodologies with the use of colorimetric reagents to determine ferrous iron are divergent and not very clear. In this study, we compared two colorimetric reagents (1,10-phenanthroline and ferrozine) to determine the total concentration of iron, ferrous and ferric ions in soil, using simple and low-cost methodologies. The determination of ferrous and total iron with 1,10-phenanthroline colorimetric reagent, following published instructions, did not correlate with ferrozine method, presenting an erroneous quantification. After neutralizing the extract of 1,10-phenanthroline with NaOH, both colorimetric methods allowed to quantify with precision and high yield the amount of ferrous and total iron extracted from the soil. The oxidation states of iron have a different contribution and importance to the environment. In this sense, the improvement of a widely used methodology is crucial for the better study of iron speciation in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Achterberg, E. P., Holland, T. W., Bowie, A. R., Mantoura, R. F. C., & Worsfold, P. J. (2001). Determination of iron in seawater. Analytica Chimica Acta, 442(1), 1–14.

    Article  CAS  Google Scholar 

  • Braunschweig, J., Bosch, J., Heister, K., Kuebeck, C., & Meckenstock, R. U. (2012). Reevaluation of colorimetric iron determination methods commonly used in geomicrobiology. Journal of Microbiological Methods, 89(1), 41–48.

    Article  CAS  Google Scholar 

  • Coey, J. M. D. (1988). Magnetic properties of iron in soil iron oxides and clay minerals. In J. W. Stucki, B. A. Goodman, & U. Schwertmann (Eds.), Iron in soils and clay minerals (pp. 397–466). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Colombo, C., Palumbo, G., He, J., Pinton, R., & Cesco, S. (2014). Review on iron availability in soil: Interaction of Fe minerals, plants, and microbes. Journal of Soils and Sediments, 14, 538–548.

    Article  CAS  Google Scholar 

  • Emsens, W., Aggenbach, C. J. S., Schoutens, K., Smolders, A. J. P., Zak, D., & van Diggelen, R. (2016). Soil iron content as a predictor of carbon and nutrient mobilization in rewetted fens. PLoS One, 11, e0153166.

    Article  Google Scholar 

  • Eskandari, H. (2011). The importance of iron (Fe) in plant products and mechanism of its uptake by plants. Journal of Applied Environmental and Biological Sciences, 1(10), 448–452.

    Google Scholar 

  • Freitas, P. C., Carvalho, R. M., Silva, J. S. A., Prado, T., Duarte, E. R., Frescura, V. L. A., & Chaves, E. S. (2015). Extração assistida por ultrassom para determinação colorimétrica de ferro em solo: uma comparação com espectrometria de massa com plasma indutivamente acoplado. Química Nova, 38(4), 570–574.

    Google Scholar 

  • Fortune, W. B., & Mellon, M. G. (1938). Determination of iron with o-phenanthroline: A spectrophotometric study. Industrial and Engineering Chemistry, Analytical Edition, 10(2), 60–64.

    Article  CAS  Google Scholar 

  • Gabriel, G. V. M., Oliveira, L. C., Barros, D. J., Bento, M. S., Neu, V., Toppa, R. H., Carmo, J. B., & Navarrete, A. A. (2020). Methane emission suppression in flooded soil from Amazonia. Chemosphere, 250, 126263.

    Article  CAS  Google Scholar 

  • Gustafsson, J. P. (2019). Visual MINTEQ, v. 3.1. Stockholm: Royal Institute of Technology, Div. of Land and Water Resources Engineering Available at: https://vminteq.lwr.kth.se.

    Google Scholar 

  • Hage, D. S., & Carr, J. D. (2012). Química analítica e análise quantitativa (pp. 101–103). São Paulo: Pearson Prentice Hall.

    Google Scholar 

  • Harvey, A. E., Smart, J. A., & Amis, E. S. (1955). Simultaneous spectrophotometric determination of iron(II) and total iron with 1,l0-phenanthroline. Analytical Chemistry, 27(1), 26–29.

    Article  CAS  Google Scholar 

  • Heron, G., Crouzet, C., Bourg, A. C. M., & Christensent, T. H. (1994). Speciation of Fe(II) and Fe(III) in contaminated aquifer sediments using chemical extraction techniques. Environmental Science & Technology, 28(9), 1698–1705.

    Article  CAS  Google Scholar 

  • Hoffmann, P. (2005). Speciation of iron. In R. Cornelis, J. Caruso, H. Crews, & K. Heumann (Eds.), Handbook of elemental speciation II - Species in the environment, food, medicine and occupational health (pp. 200–217). Hoboken: John Wiley & Sons.

    Chapter  Google Scholar 

  • Huang, W., & Hall, S. J. (2017). Optimized high-throughput methods for quantifying iron biogeochemical dynamics in soil. Geoderma, 306(15), 67–72.

    Article  CAS  Google Scholar 

  • Hummel, F. C., & Willard, H. H. (1938). Determination of iron in biological materials. Industrial and Engineering Chemistry, Analytical Edition, 10(1), 13–15.

    Article  CAS  Google Scholar 

  • Jeitner, T. M. (2014). Optimized ferrozine-based assay for dissolved iron. Analytical Biochemistry, 454(1), 36–37.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (pp. 310–313). Boca Raton: CRC Press LLC.

    Google Scholar 

  • Kot, A., & Namiesńik, J. (2000). The role of speciation in analytical chemistry. Trends in Analytical Chemistry, 19(2–3), 69–79.

    Article  CAS  Google Scholar 

  • Lovley, D. R., & Phillips, E. J. P. (1986a). Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Applied and Environmental Microbiology, 51(4), 683–689.

    Article  CAS  Google Scholar 

  • Lovley, D. R., & Phillips, E. J. P. (1986b). Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac river. Applied and Environmental Microbiology, 52(4), 751–757.

    Article  CAS  Google Scholar 

  • Lovley, D. R., & Phillips, E. J. P. (1987). Rapid assay for microbially reducible ferric iron in aquatic sediments. Applied and Environmental Microbiology, 53(7), 1536–1540.

    Article  CAS  Google Scholar 

  • Lovley, D. R. (1991). Dissimilatory Fe(III) and Mn(IV) reduction. Microbiological Reviews, 55(2), 259–287.

    Article  CAS  Google Scholar 

  • Luo, C., Hwang, J., Puno, T., & Tsai, H. (1978). Determination of trace iron(II) in the presence of iron(III). Journal of the Chinese Chemical Society, 25(3), 119–123.

    Article  CAS  Google Scholar 

  • McKnight, D. M., Bencala, K. E., Zellweger, G. W., Aiken, G. R., Feder, G. L., & Thorn, K. A. (1992). Sorption of dissolved organic-carbon by hydrous aluminum and iron-oxides occurring at the confluence of deer creek with the Snake River, Summit County, Colorado. Environmental Science & Technology, 26(7), 1388–1396.

    Article  CAS  Google Scholar 

  • Moore, T. R., Souza, W., & Koprivnjak, J. F. (1992). Controls on the sorption of dissolved organic carbon by soils. Soil Science, 154(2), 120–129.

    Article  CAS  Google Scholar 

  • Neu, V., Krusche, A. V., & Ferraz, J. (2017). Dinâmica do carbono orgânico dissolvido na solução do solo sob diferentes coberturas vegetais na Amazônia Central. In S. S. Vasconcelos, M. L. P. Ruivo, & A. M. M. Lima (Eds.), Amazônia em tempo: Impactos do uso da terra em diferentes escalas (pp. 1–504). Belém: Universidade Federal do Pará: Museu Paraense Emílio Goeldi: Embrapa Amazônia Oriental.

    Google Scholar 

  • Pehkonen, S. (1995). Determination of the oxidation states of iron in natural waters. Analyst, 120(11), 2655–2663.

    Article  CAS  Google Scholar 

  • Porsch, K., & Kappler, A. (2011). FeII oxidation by molecular O2 during HCl extraction. Environmental Chemistry, 8, 190–197.

    Article  CAS  Google Scholar 

  • Quesada, C. A., Lloyd, J., Anderson, L. O., Fyllas, N. M., Schwarz, M., & Czimczik, C. I. (2011). Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences, 8, 1415–1440.

    Article  CAS  Google Scholar 

  • Rout, G. R., & Sahoo, S. (2015). Role of iron in plant growth and metabolism. Reviews in Agricultural Science, 3, 1–24.

    Article  Google Scholar 

  • Schilt, A. A. (1969). Analytical applications of 1,10-phenanthroline and related compounds (pp. 1–9). London: Pergamon.

    Book  Google Scholar 

  • Schnell, S., Ratering, S., & Jansen, K. (1998). Simultaneous determination of iron(III), iron(II), and manganese(II) in environmental samples by ion chromatography. Environmental Science & Technology, 32(10), 1530–1537.

    Article  CAS  Google Scholar 

  • Sørensen, J. (1982). Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate. Applied and Environmental Microbiology, 43(2), 319–324.

    Article  Google Scholar 

  • Stookey, L. L. (1970). Ferrozine - A new spectrophotometric reagent for iron. Analytical Chemistry, 42(7), 779–781.

    Article  CAS  Google Scholar 

  • Tamura, H., Goto, K., Yotsuyanagi, T., & Nagayama, M. (1974). Spectrophotometric determination of iron(II) with 1,10-phenanthroline in the presence of large amounts of iron(III). Talanta, 21(4), 314–318.

    Article  CAS  Google Scholar 

  • Tarafder, P. K., & Thakur, R. (2013). An optimised 1,10-phenanthroline method for the determination of ferrous and ferric oxides in silicate rocks, soils and minerals. Geostandards and Geoanalytical Research, 37(2), 155–168.

    Article  CAS  Google Scholar 

  • Tavakoli, M. T., Chenari, A. I., Rezaie, M., Tavakoli, A., Shahsavari, M., & Mousavi, S. R. (2014). The importance of micronutrients in agricultural production. Advances in Environmental Biology, 8(10), 31–35.

    CAS  Google Scholar 

  • USDA Soil Taxonomy. (1999). A basic system of soil classification for making and interpreting soil surveys. Agricultural Handbook (Vol. 436, 2nd ed.). Washington, DC: United States Department of Agriculture, Natural Resources Conservation Service, Soil Taxonomy.

    Google Scholar 

  • USEPA. (2003). United State Environmental Protection Agency. Ecological soil screening level for iron, Interim final. OSWER Directive 9285 (pp. 7–69). Washington, DC: U.S. Environmental Protection Agency.

    Google Scholar 

  • Ure, A. M. (1990). Trace elements in soil: Their determination and speciation. Fresenius' Journal of Analytical Chemistry, 337, 577–581.

    Article  CAS  Google Scholar 

  • Xia, L., Wu, Y., Jiang, Z., Li, S., & Hu, B. (2003). Speciation of Fe(III) and Fe(II) in water samples by liquid–liquid extraction combined with low-temperature electrothermal vaporization (ETV) ICP-AES. International Journal of Environmental Analytical Chemistry, 83(11), 953–962.

    Article  Google Scholar 

  • Wallmann, K., Hennies, K., König, I., Petersen, W., & Knauth, H. (1993). New procedure for determining reactive Fe(III) and Fe(II) minerals in sediments. Limnology and Oceanography, 38(8), 1803–1812.

    Article  CAS  Google Scholar 

Download references

Code availability

Not applicable.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 (process no. 88882.306808/2018-01) and pro-equipment project (proposal no. 189683) CAPES no. 11/2014 and was supported by grants #2013/50940-0, #2016/10796-5, and #2016/16687-3, São Paulo Research Foundation (FAPESP). AAN was supported by grant #2017/03575–5, FAPESP.

Author information

Authors and Affiliations

Authors

Contributions

GVMG performed the experiments and wrote the manuscript. LMP contributed in the performance of the experiments, performed the statistics, participated on the discussion, and reviewed and edited the manuscript. LMTR performed the Visual MINTEQ analysis and discussion and prepared Fig. 3. AAN collected the soil samples and reviewed and edited the manuscript. WGB reviewed and edited the manuscript. JBC and LCO reviewed and edited the manuscript and contributed with the resources. All authors approved the final version of the manuscript for publication.

Corresponding author

Correspondence to Luciana Camargo de Oliveira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 142 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Mello Gabriel, G.V., Pitombo, L.M., Rosa, L.M.T. et al. The environmental importance of iron speciation in soils: evaluation of classic methodologies. Environ Monit Assess 193, 63 (2021). https://doi.org/10.1007/s10661-021-08874-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-08874-w

Keywords

Navigation