Patterns of tree species richness in Southwest China

Abstract

As a region known for its high species richness, southwest China plays an important role in preserving global biodiversity and ensuring ecological security in the Yangtze, Mekong, and Salween river basins. However, relatively few studies focus on the response of tree species richness to climate change in this part of China. This study determined the main tree species in southwest China using the Vegetation Map of China and the Flora of China. From simulations of 1970 to 2000 and three forecasts of future benign, moderate, and extreme climate warming anticipated during 2061 to 2080, this study used a maximum entropy model (MaxEnt) to simulate main tree species richness in southwest China. Regions with a peak species richness at intermediate elevations were typically dominated by complex mountainous terrain, such as in the Hengduan Mountains. Likewise, regions with the smallest richness were low-elevation areas, including the Sichuan Basin, and the high-elevation Sichuan-Tibet region. Annual precipitation, minimum temperature of the coldest month, temperature seasonality, and elevation were the most critical factors in estimating tree species richness in southwest China. During future 2061 to 2080 climate scenarios, tree species tended to migrate towards higher elevations as mean temperatures increased. For climate change scenarios RCP2.6–2070 (benign) and RCP4.5–2070 (moderate), the main tree species richness in the study area changed little. During the RCP8.5–2070 extreme scenario, tree species richness decreased. This study provides useful guidance to plan and implement measures to conserve biodiversity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43(6), 1223–1232.

    Google Scholar 

  2. Anderegg, W. R. L., Kane, J. M., & Anderegg, L. D. L. (2012). Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change, 3(1), 30–36.

    Google Scholar 

  3. Bojórquez-Tapia, L. A., Azuara, I., Ezcurra, E., & Flores-Villela, O. J. E. A. (1995). Identifying conservation priorities in Mexico through geographic information systems and modeling. Ecological Applications, 5(1), 215–231.

    Google Scholar 

  4. Bonan, G. B. J. S. (2008). Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 320(5882), 1444–1449.

    CAS  Google Scholar 

  5. Buongiorno, J. (2015). Modeling some long-term implications of CO2 fertilization for global forests and forest industries. Forest Ecosystems, 2(1), 29.

    Google Scholar 

  6. Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333(6045), 1024–1026.

    CAS  Google Scholar 

  7. Colwell, R. K., & Lees, D. C. (2000). The mid-domain effect: geometric constraints on the geography of species richness. Trends in ecology and evolution, 15(2), 70–76.

    CAS  Google Scholar 

  8. Dakhil, M. A., Xiong, Q., Farahat, E. A., Zhang, L., Pan, K., Pandey, B., Olatunji, O. A., Tariq, A., Wu, X., Zhang, A., Tan, X., & Huang, D. (2019). Past and future climatic indicators for distribution patterns and conservation planning of temperate coniferous forests in southwestern China. Ecological Indicators, 107, 105559.

    Google Scholar 

  9. Editorial Board of Vegetation Map of China, Chinese Academy of Science. (2001). Vegetation atlas of China. Beijing: Science Press.

    Google Scholar 

  10. Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. M. C. M., Peterson, A. T., Phillips, S. J., Richardson, K., Scachetti-Pereira, R., Schapire, R. E., Soberón, J., Williams, S., Wisz, M. S., & Zimmermann, N. E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129–151.

    Google Scholar 

  11. Feroz, S., Al Mamun, A., & Kabir, M. E. (2016). Composition, diversity and distribution of woody species in relation to vertical stratification of a tropical wet evergreen forest in Bangladesh. Global Ecology and Conservation, 8, 144–153.

    Google Scholar 

  12. Flora of China Editorial Committee (2018). Flora of China. Retrieved from http://www.efloras.org/flora_page.aspx?flora_id=2.

  13. Frank, D., Reichstein, M., Bahn, M., Thonicke, K., Frank, D., Mahecha, M. D., Smith, P., van der Velde, M., Vicca, S., Babst, F., Beer, C., Buchmann, N., Canadell, J. G., Ciais, P., Cramer, W., Ibrom, A., Miglietta, F., Poulter, B., Rammig, A., Seneviratne, S. I., Walz, A., Wattenbach, M., Zavala, M. A., & Zscheischler, J. (2015). Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Global Change Biology, 21(8), 2861–2880.

    Google Scholar 

  14. Gao, Q., Guo, Y., Xu, H., Ganjurjav, H., Li, Y., Wan, Y., Qin, X., Ma, X., & Liu, S. (2016). Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau. Science of the Total Environment, 554-555, 34–41.

    CAS  Google Scholar 

  15. Hanley, J. A., & McNeil, B. J. J. R. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), 29–36.

    CAS  Google Scholar 

  16. Kotter, R. (2013). Ecology of climate change: the importance of biotic interactions. International Journal of Environmental Studies, 70(6), 1008–1009. https://doi.org/10.1080/00207233.2013.845710.

    Article  Google Scholar 

  17. Li, N., Wang, G., Yang, Y., Gao, Y., & Liu, G. (2011). Plant production, and carbon and nitrogen source pools, are strongly intensified by experimental warming in alpine ecosystems in the Qinghai-Tibet Plateau. Soil Biology and Biochemistry, 43(5), 942–953.

    CAS  Google Scholar 

  18. Li, W. J., Peng, M. C., Higa, M., Tanaka, N., Matsui, T., Tang, C. Q., Ou, X. K., Zhou, R. W., Wang, C. Y. & Yan, H. Z. (2016). Effects of climate change on potential habitats of the cold temperate coniferous forest in Yunnan province, southwestern China. Journal of Mountain Science, 13(8), 1411–1422.

  19. Lin, C., Gong, M. H., Liu, Y., Pan, X., & Piao, Z. J. (2018). Spatial heterogeneity of biodiversity value based on dominant species: Changbaishan ecological function zone as a case study. Acta Ecologica Sinica, 38(13), 4677–4683.

    Google Scholar 

  20. Liu, C., White, M., Newell, G., & Pearson, R. (2013). Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography, 40(4), 778–789.

    Google Scholar 

  21. Loarie, S. R., Duffy, P. B., Hamilton, H., Asner, G. P., Field, C. B., & Ackerly, D. D. (2009). The velocity of climate change. Nature, 462(7276), 1052–1055.

    CAS  Google Scholar 

  22. Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M., & Gascon, C. (2011). Global biodiversity conservation: the critical role of hotspots. Biodiversity hotspots, 3–22.

  23. Mora, C., Caldwell, I. R., Caldwell, J. M., Fisher, M. R., Genco, B. M., & Running, S. W. (2015). Suitable days for plant growth disappear under projected climate change: potential human and biotic vulnerability. PLoS Biology, 13(6), e1002167.

    Google Scholar 

  24. Moreno, R., Zamora, R., Molina, J. R., Vasquez, A., & Herrera, M. Á. (2011). Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests using Maximum entropy (Maxent). Ecological Informatics, 6(6), 364–370.

    Google Scholar 

  25. Murray-Smith, C., Brummitt, N. A., Oliveira-Filho, A. T., Bachman, S., Moat, J., Lughadha, E. M. N., & Lucas, E. J. (2009). Plant diversity hotspots in the Atlantic coastal forests of Brazil. Conservation Biology, 23(1), 151–163.

    Google Scholar 

  26. O'Neill, B. C., Oppenheimer, M., Warren, R., Hallegatte, S., Kopp, R. E., Pörtner, H. O., Scholes, R., Birkmann, J., Foden, W., Licker, R., Mach, K. J., Marbaix, P., Mastrandrea, M. D., Price, J., Takahashi, K., Ypersele, J.-P., & Yohe, G. (2017). IPCC reasons for concern regarding climate change risks. Nature Climate Change, 7(1), 28–37.

    Google Scholar 

  27. Ouyang, Z., Zheng, H., Xiao, Y., Polasky, S., Liu, J., Xu, W., Wang, Q., Zhang, L., Xiao, Y., Rao, E., Jiang, L., Lu, F., Wang, X., Yang, G., Gong, S., Wu, B., Zeng, Y., Yang, W., & Daily, G. C. (2016). Improvements in ecosystem services from investments in natural capital. Science, 352(6292), 1455–1459.

    CAS  Google Scholar 

  28. Parmesan, C. (2007). Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Global Change Biology, 13(9), 1860–1872.

    Google Scholar 

  29. Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Peterson, A. T. (2006). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34(1), 102–117.

    Google Scholar 

  30. Phillips, S. J., & Dudík, M. J. E. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31(2), 161–175.

    Google Scholar 

  31. Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259.

    Google Scholar 

  32. Pineda, E., & Lobo, J. M. (2009). Assessing the accuracy of species distribution models to predict amphibian species richness patterns. Journal of Animal Ecology, 78(1), 182–190.

    Google Scholar 

  33. Ricklefs, R. E. (2004). A comprehensive framework for global patterns in biodiversity. Ecology Letters, 7(1), 1–15.

    Google Scholar 

  34. Sandel, B., Arge, L., Dalsgaard, B., Davies, R. G., Gaston, K. J., Sutherland, W. J., & Svenning, J.-C. (2011). The influence of Late Quaternary climate-change velocity on species endemism. Science, 334(6056), 660–664.

    CAS  Google Scholar 

  35. Steinbauer, M. J., Grytnes, J.-A., Jurasinski, G., Kulonen, A., Lenoir, J., Pauli, H., Rixen, C., Winkler, M., Bardy-Durchhalter, M., Barni, E., Bjorkman, A. D., Breiner, F. T., Burg, S., Czortek, P., Dawes, M. A., Delimat, A., Dullinger, S., Erschbamer, B., Felde, V. A., Fernández-Arberas, O., Fossheim, K. F., Gómez-García, D., Georges, D., Grindrud, E. T., Haider, S., Haugum, S. V., Henriksen, H., Herreros, M. J., Jaroszewicz, B., Jaroszynska, F., Kanka, R., Kapfer, J., Klanderud, K., Kühn, I., Lamprecht, A., Matteodo, M., Morra di Cella, U., Normand, S., Odland, A., Olsen, S. L., Palacio, S., Petey, M., Piscová, V., Sedlakova, B., Steinbauer, K., Stöckli, V., Svenning, J.-C., Teppa, G., Theurillat, J.-P., Vittoz, P., Woodin, S. J., Zimmermann, N. E., & Wipf, S. (2018). Accelerated increase in plant species richness on mountain summits is linked to warming. Nature, 556(7700), 231–234.

    CAS  Google Scholar 

  36. Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M. M. B., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., & Midgley, P. M. (2013). Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (1535 pp). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

    Google Scholar 

  37. Tang, C. Q., Matsui, T., Ohashi, H., Dong, Y.-F., Momohara, A., Herrando-Moraira, S., Qian, S., Yang, Y., Ohsawa, M., Luu, H. T., Grote, P. J., Krestov, P. V., LePage, B., Werger, M., Robertson, K., Hobohm, C., Wang, C.-Y., Peng, M.-C., Chen, X., Wang, H.-C., Su, W.-H., Zhou, R., Li, S., He, L.-Y., Yan, K., Zhu, M.-Y., Hu, J., Yang, R.-H., Li, W.-J., Tomita, M., Wu, Z.-L., Yan, H.-Z., Zhang, G.-F., He, H., Yi, S.-R., Gong, H., Song, K., Song, D., Li, X.-S., Zhang, Z.-Y., Han, P.-B., Shen, L.-Q., Huang, D.-S., Luo, K., & López-Pujol, J. (2018). Identifying long-term stable refugia for relict plant species in East Asia. Nature Communications, 9(1), 4488.

    Google Scholar 

  38. Tavşanoğlu, Ç. (2015). Ecology of climate change - the importance of biotic interactions. Folia Zoologica, 64(3), 296–298.

    Google Scholar 

  39. Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., de Siqueira, M. F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Townsend Peterson, A., Phillips, O. L., & Williams, S. E. (2004). Extinction risk from climate change. Nature, 427(6970), 145–148.

    CAS  Google Scholar 

  40. Wang, Z., Fang, J., Tang, Z., & Lin, X. (2011). Patterns, determinants and models of woody plant diversity in China. Proceedings of the Royal Society B: Biological Sciences, 278(1715), 2122–2132.

    Google Scholar 

  41. Wang, S., Xu, X., Shrestha, N., Zimmermann, N. E., Tang, Z., & Wang, Z. (2017). Response of spatial vegetation distribution in China to climate changes since the Last Glacial Maximum (LGM). PLoS One, 12(4), e0175742.

    Google Scholar 

  42. Xin, X., Zhang, L., Zhang, J., Wu, T., & Fang, Y. (2013). Climate change projections over East Asia with BCC_CSM1.1 climate model under RCP scenarios. Journal of the Meteorological Society of Japan, 91(4), 413–429.

    Google Scholar 

  43. Xing, Y., & Ree, R. H. (2017). Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proceedings of the National Academy of Sciences, 114(17), E3444–E3451.

    CAS  Google Scholar 

  44. Yang, X.-Q., Kushwaha, S. P. S., Saran, S., Xu, J., & Roy, P. S. (2013). Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecological Engineering, 51, 83–87.

    CAS  Google Scholar 

  45. Zhang, M. G., Slik, J. F., & Ma, K. P. (2016a). Using species distribution modeling to delineate the botanical richness patterns and phytogeographical regions of China. Scientific Reports, 6(1), 1–9.

    Google Scholar 

  46. Zhang, M., Wang, K., Liu, H., Wang, J., Zhang, C., Yue, Y., & Qi, X. (2016b). Spatio-temporal variation and impact factors for vegetation carbon sequestration and oxygen production based on rocky desertification control in the karst region of Southwest China. Remote Sensing, 8(2), 102.

    Google Scholar 

  47. Zhao, D., Wu, S., Yin, Y., & Yin, Z. Y. (2011). Vegetation distribution on Tibetan Plateau under climate change scenario. Regional Environmental Change, 11(4), 905–915.

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Yuanjie Xu from Yunnan Academy of Biodiversity for helpful suggestions.

Funding

This work was supported by the National Natural Science Foundation [31700467], Agricultural joint general project of Yunnan Province [2018FG001–065], and Doctoral Research Launch Fund project of Southwest Forestry University [112003].

Author information

Affiliations

Authors

Contributions

Shuangfei Lu participated in the design of the study, carried out data analysis, and wrote original draft. Xiaojie Yin conceived of the study, participated in the design, and provided project financial support. Siyi Zhou and Chao Zhang reviewed, rewrote, and edited this manuscript. Rongliang Li, Jiahui Chen, Dongxu Ma, Yi Wang, and Yuheng Chen carried out investigation and data curation. Zhexiu Yu was responsible for the operation of the software. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaojie Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests. The datasets analyzed during the current study are available from the corresponding author on request.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Zhou, S., Yin, X. et al. Patterns of tree species richness in Southwest China. Environ Monit Assess 193, 97 (2021). https://doi.org/10.1007/s10661-021-08872-y

Download citation

Keywords

  • Climate change
  • Biodiversity conservation
  • Maximum entropy model
  • Environmental variables
  • Tree species richness
  • Habitat evaluation