Statistical modeling of sea ice concentration in the northwest region of the Antarctic Peninsula

Abstract

Sea ice is one of the main components of the cryosphere that modifies the exchange of heat and moisture between the ocean and atmosphere, regulating the global climate. In this sense, it is important to identify the concentration of sea ice in different regions of Antarctica in order to measure the impact of environmental changes on the region’s ecosystem. The objective of this study was to evaluate the performance of the multiple linear regression and Box–Jenkins methods for predicting the concentration of sea ice along the northwest coast of the Antarctic Peninsula. Sea ice concentration data from May to November for the period 1979–2018 were extracted from passive remote sensors including a scanning multichannel microwave radiometer, special sensor microwave imager, and special sensor microwave imager/sounder. Meteorological variables from the atmospheric reanalysis model ERA5 of the European Center for Medium-Range Weather Forecasts were used as predictor variables, and the leave-one-out cross-validation technique was used to calibrate and validate the models. It was found that both statistical models have similar performance when analyzing residual analysis results, root mean square error of cross-validation, and final accuracy and residual standard deviation, these responses being related to the regionalization of the study area and to the Box–Jenkins presents strong, homogeneous, and stable correlations in the time series modeled for each pixel.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Ahn, J., & Lee, Y. W. (2013). Recent 10-year changes and the prediction of Arctic Sea ice: a multivariate SARIMA approach. Paper presented at Proceedings SPIE 8888, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, Dresden, Germany, October 16. https://doi.org/10.1117/12.2029197.

  2. Ahn, J., Hong, S., Cho, J., Lee, Y. W., & Lee, H. (2014). Statistical modeling of sea ice concentration using satellite imagery and climate reanalysis data in the Barents and Kara seas, 1979-2012. Remote Sensing, 6(6), 5520–5540. https://doi.org/10.3390/rs6065520.

    Article  Google Scholar 

  3. Badr, H. S., Zaitchik, B. F., & Guikema, S. D. (2014). Application of statistical models to the prediction of seasonal rainfall anomalies over the Sahel. Journal of Applied Meteorology and Climatology, 53(3), 614–636. https://doi.org/10.1175/JAMC-D-13-0181.1.

    Article  Google Scholar 

  4. Benson, C. S., & Sturm, M. (1993). Structure and wind transport of seasonal snow on the Arctic slope of Alaska. Annals of Glaciology, 18, 261–267. https://doi.org/10.3189/S0260305500011629.

    Article  Google Scholar 

  5. Box, G. E. P., & Jenkins, G. M. (1976). Time series analysis forecasting and control. San Francisco: Holden- Day.

    Google Scholar 

  6. Cavalieri, D. J., Gloersen, P., & Campbell, W. J. (1984). Determination of sea ice parameters with the Nimbus 7 SMMR. Journal of Geophysical Research: Atmospheres, 89(D4), 5355–5369. https://doi.org/10.1029/JD089iD04p05355.

    Article  Google Scholar 

  7. Cavalieri, D. J., Crawford, J. P., Drinkwater, M. R., Eppler, D. T., Farmer, L. D., Jentz, R. R., & Wackerman, C. C. (1991). Aircraft active and passive microwave validation of sea ice concentration from the Defense Meteorological Satellite Program special sensor microwave imager. Journal of Geophysical Research: Oceans, 96(C12), 21989–22008. https://doi.org/10.1029/91JC02335.

    Article  Google Scholar 

  8. Chin, W. W. (1998). The partial least squares approach to structural equation modeling. In G. A. Marcoulides (Ed.), Modern methods for business research (pp. 1295–1336). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  9. Comiso, J. C. (1986). Characteristics of Arctic winter sea ice from satellite multispectral microwave observations. Journal of Geophysical Research: Oceans, 91(C1), 975–994. https://doi.org/10.1029/JC091iC01p00975.

    Article  Google Scholar 

  10. Comiso, J. C., & Nishio, F. (2008). Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. Journal of Geophysical Research: Oceans, 113(C2), 1–22. https://doi.org/10.1029/2007jc004257.

    Article  Google Scholar 

  11. Comiso, J. C., Gersten, R. A., Stock, L. V., Turner, J., Perez, G. J., & Cho, K. (2017). Positive trend in the Antarctic Sea ice cover and associated changes in surface temperature. Journal of Climate, 30(6), 2251–2267. https://doi.org/10.1175/JCLI-D-16-0408.1.

    Article  Google Scholar 

  12. Cordier, C., Guyomard, K., Stavrakakis, C., Sauvade, P., Coelho, F., & Moulin, P. (2020). Culture of microalgae with ultrafiltered seawater: a feasibility study. SciMedicine Journal, 2(2), 56–62. https://doi.org/10.28991/SciMedJ-2020-0202-2.

    Article  Google Scholar 

  13. De Santis, A., Maier, E., Gomez, R., & Gonzalez, I. (2017). Antarctica, 1979–2016 sea ice extent: total versus regional trends, anomalies, and correlation with climatological variables. International Journal of Remote Sensing, 38(24), 7566–7584. https://doi.org/10.1080/01431161.2017.1363440.

    Article  Google Scholar 

  14. Eayrs, C., Holland, D. M., Francis, D., Wagner, T. J. W., Kumar, R., & Li, X. (2019). Understanding the seasonal cycle of Antarctic Sea ice extent in the context of longer-term variability. Reviews of Geophysics, 57, 1037–1064. https://doi.org/10.1029/2018RG000631.

    Article  Google Scholar 

  15. Espinosa, M. M., Prado, S. M., & Ghellere, M. (2010). Uso do modelo SARIMA na previsão do número de focos de calor para os meses de junho a outubro no Estado de Mato Grosso. Ciência e Natura, 32(2), 7–21. https://doi.org/10.5902/2179460X9482 (in Portuguese).

    Article  Google Scholar 

  16. Etourneau, J., Sgubin, G., Crosta, X., Swingedouw, D., Willmott, V., Barbara, L., Houssais, M. N., Schouten, S., Damsté, J. S. S., Goosse, H., Escutia, C., Crespin, J., Massé, G., & Kim, J. H. (2019). Ocean temperature impact on ice shelf extent in the eastern Antarctic Peninsula. Nature Communications, 10, 304. https://doi.org/10.1038/s41467-018-08195-6.

    CAS  Article  Google Scholar 

  17. Fava, V. L. (2000). Manual de econometria. São Paulo: Editora Atlas (in Portuguese).

    Google Scholar 

  18. Fujiwara, M., Wright, J. S., Manney, G. L., Gray, L. J., Anstey, J., Birner, T., Davis, S., Gerber, E. P., Harvey, V. L., Hegglin, M. I., Homeyer, C. R., Knox, J. A., Krüger, K., Lambert, A., Long, C. S., Martineau, P., Molod, A., Monge-Sanz, B. M., Santee, M. L., Tegtmeier, S., Chabrillat, S., Tan, D. G. H., Jackson, D. R., Polavarapu, S., Compo, G. P., Dragani, R., Ebisuzaki, W., Harada, Y., Kobayashi, C., McCarty, W., Onogi, K., Pawson, S., Simmons, A., Wargan, K., Whitaker, J. S., & Zou, C. (2017). Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. Atmospheric Chemistry and Physics, 17(2), 1417–1452. https://doi.org/10.5194/acp-17-1417-2017.

    CAS  Article  Google Scholar 

  19. Gujarati, D. N., & Porter, D. C. (2009). Basic econometrics. New York: McGraw-Hill.

    Google Scholar 

  20. Hair, J. R., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (1998). Multivariate data analysis. Upper Saddle River: Prentice hall.

    Google Scholar 

  21. Harangozo, S. A. (2006). Atmospheric circulation impacts on winter maximum sea ice extent in the west Antarctic Peninsula region (1979-2001). Geophysical Research Letters, 33(2), 1–4. https://doi.org/10.1029/2005GL024978.

    Article  Google Scholar 

  22. Hashimoto, C., & Mata, M. M. (2019). Polínias costeiras da Antártica através de uma reanálise oceânica de alta resolução. Revista Geociências, 38(2), 507–519 (in Portuguese).

    Google Scholar 

  23. Hillebrand, F. L., Bremer, U. F., de Freitas, M. W. D., Costi, J., Mendes Júnior, C. W., Arigony-Neto, J., & Simões, J. C. (2020a). Spectral linear mixing model applied to data from passive microwave radiometers for sea ice mapping in the Antarctic Peninsula. Geocarto International, 1–30. https://doi.org/10.1080/10106049.2020.1856194.

  24. Hillebrand, F. L., da Rosa, C. N., de Jesus, J. B., & Bremer, U. F. (2020b). Influência Climática na Formação do Gelo Marinho da Antártica Registrada por meio do Sensoriamento Remoto. Anuário do Instituto de Geociências – UFRJ, 43(1), 151–161. https://doi.org/10.11137/2020_1_151_161 (in Portuguese).

    Article  Google Scholar 

  25. Holland, P. R. (2014). The seasonality of Antarctic Sea ice trends. Geophysical Research Letters, 41, 4230–4237. https://doi.org/10.1002/2014GL060172.

    Article  Google Scholar 

  26. Holland, P. R., & Kwok, R. (2012). Wind-driven trends in Antarctic Sea-ice drift. Nature Geoscience, 5, 872–875. https://doi.org/10.1038/ngeo1627.

    CAS  Article  Google Scholar 

  27. Holland, P. R., Jenkins, A., & Holland, D. M. (2010). Ice and ocean processes in the Bellingshausen Sea, Antarctica. Journal of Geophysical Research: Oceans, 115(C5), 1–16. https://doi.org/10.1029/2008JC005219.

    Article  Google Scholar 

  28. Hosking, J. S., Orr, A., Marshall, G. J., Turner, J., & Phillips, T. (2013). The influence of the Amundsen-Bellingshausen seas low on the climate of West Antarctica and its representation in coupled climate model simulations. Journal of Climate, 26(17), 6633–6648. https://doi.org/10.1175/JCLI-D-12-00813.1.

    Article  Google Scholar 

  29. Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts: Monash University.

    Google Scholar 

  30. Ionita, M., Grosfeld, K., Scholz, P., Treffeisen, R., & Lohmann, G. (2019). September Arctic Sea ice minimum prediction – a skillful new statistical approach. Earth System Dynamics, 10, 189–203. https://doi.org/10.5194/esd-10-189-2019.

    Article  Google Scholar 

  31. Ivanova, N., Pedersen, L. T., Tonboe, R. T., Kern, S., Heygster, G., Lavergne, T., Sorensen, A., Saldo, R., Dybkaer, G., Brucker, L., & Shokr, M. (2015). Satellite passive microwave measurements of sea ice concentration: An optimal algorithm and challenges. Cryosphere, 9(1), 1797–1817. https://doi.org/10.5194/tcd-9-1269-2015.

    Article  Google Scholar 

  32. Jacobs, S. S., & Comiso, J. C. (1997). Climate variability in the Amundsen and Bellingshausen seas. Journal of Climate, 10(4), 697–709. https://doi.org/10.1175/1520-0442(1997)010<0697:CVITAA>2.0.CO;2.

    Article  Google Scholar 

  33. Javadinejad, S., Dara, R., & Jafary, F. (2020). Climate change scenarios and effects on snow-melt runoff. Civil Engineering Journal, 6(9), 1715–1725 https://doi.org/10.28991/cej-2020-03091577.

    Article  Google Scholar 

  34. Kim, J., Kim, K., Cho, J., Kang, Y. Q., Yoon, H. J., & Lee, Y. W. (2019). Satellite-based prediction of Arctic sea ice concentration using a deep neural network with multi-model ensemble. Remote Sensing, 11(1), 19. https://doi.org/10.3390/rs11010019.

  35. King, J. C. (1994). Recent climate variability in the vicinity of the Antarctic Peninsula. International Journal of Climatology, 14(4), 357–369. https://doi.org/10.1002/joc.3370140402.

    Article  Google Scholar 

  36. King, J. C., & Comiso, J. C. (2003). The spatial coherence of interannual temperature variations in the Antarctic Peninsula. Geophysical Research Letters, 30(2), 1–4. https://doi.org/10.1029/2002GL015580.

    Article  Google Scholar 

  37. Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model Selecti. Paper presented at Fourteenth International Joint Conference on Articial Intelligence (IJCA), Montreal, Canada, August 20-25.

  38. Kohlbach, D., Lange, B. A., Schaafsma, F. L., David, C., Vortkamp, M., Graeve, M., Franeker, J. A., Krumpen, T., & Flores, H. (2017). Ice algae-produced carbon is critical for overwintering of Antarctic krill Euphausia superba. Frontiers in Marine Science, 4, 1–16. https://doi.org/10.3389/fmars.2017.00310.

    Article  Google Scholar 

  39. Ledley, T. S., & Huang, Z. (1997). A possible ENSO signal in the Ross Sea. Geophysical Research Letters, 24(24), 3253–3256. https://doi.org/10.1029/97GL03315.

    Article  Google Scholar 

  40. Lefebvre, W., & Goosse, H. (2008). An analysis of the atmospheric processes driving the large-scale winter sea ice variability in the Southern Ocean. Journal of Geophysical Research: Oceans, 113(C2), 1–15. https://doi.org/10.1029/2006JC004032.

    Article  Google Scholar 

  41. Lefebvre, W., Goosse, H., Timmermann, R., & Fichefet, T. (2004). Influence of the Southern Annular Mode on the sea ice-ocean system. Journal of Geophysical Research: Oceans, 109(C9), 1–12. https://doi.org/10.1029/2004JC002403.

    Article  Google Scholar 

  42. Liu, J., Curry, J. A., & Martinson, D. G. (2004). Interpretation of recent Antarctic Sea ice variability. Geophysical Research Letters, 31(2), 1–4. https://doi.org/10.1029/2003GL018732.

    CAS  Article  Google Scholar 

  43. Loeb, V. J., & Santora, J. A. (2015). Climate variability and spatiotemporal dynamics of five Southern Ocean krill species. Progress in Oceanography, 134, 93–122. https://doi.org/10.1016/j.pocean.2015.01.002.

    Article  Google Scholar 

  44. Marshall, G. J., Orr, A., Van Lipzig, N. P., & King, J. C. (2006). The impact of a changing Southern Hemisphere Annular Mode on Antarctic Peninsula summer temperatures. Journal of Climate, 19(20), 5388–5404. https://doi.org/10.1175/JCLI3844.1.

    Article  Google Scholar 

  45. Massom, R. A., Drinkwater, M. R., & Haas, C. (1997). Winter snow cover on sea ice in the Weddell Sea. Journal of Geophysical Research, 102(C1), 1101–1117. https://doi.org/10.1029/96JC02992.

    CAS  Article  Google Scholar 

  46. Meier, W. N., Fetterer, F., Savoie, M., Mallory, S., Duerr, R., & Stroeve, J. (2017). NOAA/NSIDC climate data record of passive microwave sea ice concentration, version 3. Boulder, USA: National Snow and Ice Data Center. https://doi.org/10.7265/N59P2ZTG.

  47. Ménard, R., & Deshaies-Jacques, M. (2018). Evaluation of analysis by cross-validation. Part I: using verification metrics. Atmosphere, 9(3), 86. https://doi.org/10.3390/atmos9030086.

    Article  Google Scholar 

  48. Meredith, M. P., & King, J. C. (2005). Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophysical Research Letters, 32, L19604. https://doi.org/10.1029/2005GL024042.

    Article  Google Scholar 

  49. Moffat, C., & Meredith, M. (2018). Shelf-ocean exchange and hydrography west of the Antarctic Peninsula: a review. Philosophical Transactions of the Royal Society A, 376(2122), 1–17. https://doi.org/10.1098/rsta.2017.0164.

    Article  Google Scholar 

  50. Montes-Hugo, M., Doney, S. C., Ducklow, H. W., Fraser, W., Martinson, D., Stammerjohn, S. E., & Schofield, O. (2009). Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula. Science, 323(5920), 1470–1473. https://doi.org/10.1126/science.1164533.

    CAS  Article  Google Scholar 

  51. Morettin, P. A., & Toloi, C. M. C. (1987). Previsão de séries temporais. São Paulo: Atual Editora (in Portuguese).

    Google Scholar 

  52. Morettin, P. A., & Toloi, C. M. C. (2006). Análise de séries temporais. São Paulo: Editora Edgard Blüncher (in Portuguese).

    Google Scholar 

  53. Nazarnia, H., Nazarnia, M., Sarmasti, H., & Wills, W. O. (2020). A systematic review of civil and environmental infrastructures for coastal adaptation to sea level rise. Civil Engineering Journal, 6(7), 1375–1339. https://doi.org/10.28991/cej-2020-03091555.

    Article  Google Scholar 

  54. Nicol, S., & Brierley, A. S. (2010). Through a glass less darkly - new approaches for studying the distribution, abundance and biology of Euphausiids. Deep-Sea Research Part II: Topical Studies in Oceanography, 57(7–8), 496–507. https://doi.org/10.1016/j.dsr2.2009.10.002.

    Article  Google Scholar 

  55. Nihashi, S., & Ohshima, K. I. (2015). Circumpolar mapping of Antarctic coastal polynyas and landfast sea ice: relationship and variability. Journal of Climate, 28(9), 3650–3670. https://doi.org/10.1175/JCLI-D-14-00369.1.

    Article  Google Scholar 

  56. Parkinson, C. L. (2019). A 40-y record reveals gradual Antarctic Sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. Proceedings of the National Academy of Sciences of the United States of America, 116(29), 14414–14423. https://doi.org/10.1073/pnas.1906556116.

    CAS  Article  Google Scholar 

  57. Pezza, A. B., Rashid, H. A., & Simmonds, I. (2012). Climate links and recent extremes in Antarctic Sea ice, high-latitude cyclones, Southern Annular Mode and ENSO. Climate Dynamics, 38, 57–73. https://doi.org/10.1007/s00382-011-1044-y.

    Article  Google Scholar 

  58. Powell, D. C., Markus, T., & Stossel, A. (2005). Effects of snow depth forcing on Southern Ocean sea ice simulations. Journal of Geophysical Research-Oceans, 110(C6001), 1–10. https://doi.org/10.1029/2003jc002212.

    Article  Google Scholar 

  59. Qu, B., Gabric, A. J., Zhu, J. N., Lin, D. R., Qian, F., & Zhao, M. (2012). Correlation between sea surface temperature and wind speed in Greenland Sea and their relationships with NAO variability. Water Science and Engineering, 5(3), 304–315. https://doi.org/10.3882/j.issn.1674-2370.2012.03.006.

    Article  Google Scholar 

  60. Schaafsma, F. L., Kohlbach, D., David, C., Lange, B. A., Graeve, M., Flores, H., & Van Franeker, J. A. (2017). Spatio-temporal variability in the winter diet of larval and juvenile Antarctic krill, Euphausia superba, in ice-covered waters. Marine Ecology Progress Series, 580, 101–115. https://doi.org/10.3354/meps12309.

    CAS  Article  Google Scholar 

  61. Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika Trust, 52(3–4), 591–609. https://doi.org/10.2307/2333709.

    Article  Google Scholar 

  62. Simpkins, G. R., Ciasto, L. M., Thompson, D. W., & England, M. H. (2012). Seasonal relationships between large-scale climate variability and Antarctic Sea ice concentration. Journal of Climate, 25(16), 5451–5469. https://doi.org/10.1175/JCLI-D-11-00367.1.

    Article  Google Scholar 

  63. Stammerjohn, S. E., Martinson, D. G., Smith, R. C., & Iannuzzi, R. A. (2008). Sea ice in the western Antarctic Peninsula region: Spatio-temporal variability from ecological and climate change perspectives. Deep Sea Research Part II: Topical Studies in Oceanography, 55(18–19), 2041–2058. https://doi.org/10.1016/j.dsr2.2008.04.026.

    Article  Google Scholar 

  64. Stark, P. (1994). Climatic warming in the central Antarctic Peninsula area. Weather, 49(6), 215–220. https://doi.org/10.1002/j.1477-8696.1994.tb06016.x.

    Article  Google Scholar 

  65. Stroeve, J., & Meier, W. N. (2018). Sea ice trends and climatologies from SMMR and SSM/I-SSMIS, version 3. Boulder: NASA National Snow and Ice Data Center Distributed Active Archive Center.

    Google Scholar 

  66. Stroeve, J., Frei, A., McCreight, J., & Ghatak, D. (2008). Arctic Sea-ice variability revisited. Annals of Glaciology, 48, 71–81. https://doi.org/10.3189/172756408784700699.

    CAS  Article  Google Scholar 

  67. Thanh, N. T. (2019). Evaluation of multi-precipitation products for multi-time scales and spatial distribution during 2007-2015. Civil Engineering Journal, 5(1), 255–267. https://doi.org/10.28991/cej-2019-03091242.

    Article  Google Scholar 

  68. Turner, J., Maksym, T., Phillips, T., Marshall, G. J., & Meredith, M. P. (2013). The impact of changes in sea ice advance on the large winter warming on the western Antarctic peninsula. International Journal of Climatology, 33(4), 852–861. https://doi.org/10.1002/joc.3474.

    Article  Google Scholar 

  69. Turner, J., Hosking, J. S., Marshall, G. J., Phillips, T., & Bracegirdle, T. J. (2016). Antarctic Sea ice increase consistent with intrinsic variability of the Amundsen Sea low. Climate Dynamics, 46, 2391–2402. https://doi.org/10.1007/s00382-015-2708-9.

    Article  Google Scholar 

  70. Turner, J., Marshall, G. J., Clem, K., Colwell, S., Phillips, T., & Lu, H. (2020). Antarctic temperature variability and change from station data. International Journal of Climatology, 40(6), 2986–3007. https://doi.org/10.1002/joc.6378.

    Article  Google Scholar 

  71. Urbach, N., & Ahlemann, F. (2010). Structural equation modeling in information systems research using partial M squares. Journal of Information Technology Theory and Application, 11(2), 5–40.

    Google Scholar 

  72. Vaughan, D. G., Marshall, G. J., Connolley, W. M., Parkinson, C., Mulvaney, R., Hodgson, D. A., John, C. K., Pudsey, C. J., & Turner, J. (2003). Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change, 60(3), 243–274. https://doi.org/10.1023/A:1026021217991.

    Article  Google Scholar 

  73. Viganó, H. H. G., Souza, C. C., Reis Neto, J. F., Cristaldo, M. F., & Jesus, L. (2018). Prediction and modeling of forest fires in the Pantanal. Revista Brasileira de Meteorologia, 33(2), 306–316. https://doi.org/10.1590/0102-7786332012 (in Portuguese).

    Article  Google Scholar 

  74. Wang, Z., Wille, U., & Juaristi, E. (2017). Encyclopedia of physical organic chemistry. Hoboken: John Wiley & Sons.

    Google Scholar 

  75. Werner, L., & Ribeiro, J. L. D. (2003). Previsão de demanda: uma aplicação dos modelos Box-Jenkins na área de assistência técnica de computadores pessoais. Gestão & Produção, 10(1), 47–67. https://doi.org/10.1590/S0104-530X2003000100005 (in Portuguese).

    Article  Google Scholar 

  76. Wilks, D. S. (2011). Statistical methods in the atmospheric sciences. Oxford: Academic press.

    Google Scholar 

  77. Zhang, J. (2007). Increasing Antarctic Sea ice under warming atmospheric and oceanic conditions. Journal of Climate, 20(11), 2515–2529. https://doi.org/10.1175/JCLI4136.1.

    Article  Google Scholar 

  78. Zhang, J. (2014). Modeling the impact of wind intensification on Antarctic Sea ice volume. Journal of Climate, 27(1), 202–214. https://doi.org/10.1175/JCLI-D-12-00139.1.

    CAS  Article  Google Scholar 

  79. Zhang, Y., Cheng, X., Liu, J., & Hui, F. (2018). The potential of sea ice leads as a predictor for summer Arctic Sea ice extent. The Cryosphere, 12, 3747–3757. https://doi.org/10.5194/tc-12-3747-2018.

    Article  Google Scholar 

  80. Zwally, H. J., Comiso, J. C., Parkinson, C. L., Campbell, W. J., & Carsey, F. D. (1983). Antarctic Sea ice, 1973–1976: satellite passive-microwave observations (Tech. Rep.). Washington: National Aeronautics and Space Administration.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Federal Institute of Education, Science, and Technology of Rio Grande do Sul (IFRS), which allowed doctoral studies for the first author.

Funding

We received financial support from the Coordination for the Improvement of Higher Education Personnel (CAPES), the National Institute of Science and Technology of the Cryosphere (INCT da Criosfera), financing by the Research Support Foundation of Rio Grande do Sul (FAPERGS) project 17/25510000518-0, and the National Council for Scientific and Technological Development (CNPq) project 465680/2014-3.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fernando Luis Hillebrand.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hillebrand, F.L., Bremer, U.F., de Freitas, M.W.D. et al. Statistical modeling of sea ice concentration in the northwest region of the Antarctic Peninsula. Environ Monit Assess 193, 74 (2021). https://doi.org/10.1007/s10661-021-08843-3

Download citation

Keywords

  • Box–Jenkins
  • Multiple linear regression
  • ERA5
  • Time series
  • Passive remote sensors