Occurrence and environmental risks of nonsteroidal anti-inflammatory drugs in urban wastewater in the southwest monsoon region of India

Abstract

Municipal wastewater treatment plants (MWWTPs) are considered to reduce the amount of pollutants that enter water reservoirs as a result of wastewater disposal. An assessment of the occurrence and removal of pharmaceutical compounds, mainly nonsteroidal anti-inflammatory drugs (NSAIDs), in wastewater from the Kavoor MWWTP (southwest monsoon region), India, is presented in this paper. The performance of the MWWTP was monitored in the summer (May) and monsoon (September) periods. The highest inlet concentrations of diclofenac, naproxen, ibuprofen, ketoprofen, and acetylsalicylic acid in the wastewater were observed in May and were 721.37, 2132.48, 2109.875, 2747.29, and 2213.36 μg/L, respectively. The ketoprofen content was found to be higher than that of other NSAIDs in the influent in both seasons, whereas the diclofenac content was found to be the lowest. The removal efficiency (RE) of the target NSAIDs in the Kavoor secondary treatment plant varied from 81.82–98.92% during the summer season. During the monsoon season, the influent NSAID concentration level dropped, probably because of infiltration in old sewer pipes. In addition, a 100% RE was achieved for all the target NSAIDs in the wastewater of the MWWTP. The results showed that secondary treatment plants have the potential to remove NSAID compounds from municipal sewage with consistent performance. The environmental hazards caused by the accumulation of such compounds in water reservoirs are due to open discharge. The environmental risk levels of these compounds were also studied by the environmental risk assessment (ERA) using the European Agency for Evaluation of Medicines approach.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Anh, D. V. H., Minh, B. Q., & Nhat, P. H. (2014). Environmental risks of some nonsteroidal anti-inflammatory drugs ( NSAIDs ) in surface water in Ho Chi Minh City. In 3rd World Conference on Applied Sciences, Engineering & Technology (pp. 724–727).

  2. Balakrishna, K., Rath, A., Praveenkumarreddy, Y., Siri, K. G., & Subedi, B. (2017). A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. Ecotoxicology and Environmental Safety, 137, 113–120. https://doi.org/10.1016/j.ecoenv.2016.11.014.

    CAS  Article  Google Scholar 

  3. Cardoso, O., Porcher, J.-M., & Sanchez, W. (2014). Factory-discharged pharmaceuticals could be a relevant source of aquatic environment contamination: Review of evidence and need for knowledge. Chemosphere, 115, 20–30. https://doi.org/10.1016/j.chemosphere.2014.02.004.

    CAS  Article  Google Scholar 

  4. Chandramouli, C. (2011). Census of India 2011 Karnataka. In District census handbook (Vol. 30).

    Google Scholar 

  5. Cleuvers, M. (2004). Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotoxicology and Environmental Safety, 59, 309–315. https://doi.org/10.1016/S0147-6513(03)00141-6.

    CAS  Article  Google Scholar 

  6. Directorate of Economics and Statistics. (2018). Annual seasonal rainfall & area coverage during 2017 in Karnataka, Doc. Ref.: DES/10/2018.

  7. Dökmeci, A. H., Dökmeci, I., & Ibar, H. (2014). The determination of single and mixture toxicity at high concentrations of some acidic pharmaceuticals via Aliivibrio fischeri. Environmental Processes, 1, 95–103. https://doi.org/10.1007/s40710-014-0009-7.

    Article  Google Scholar 

  8. Ekpeghere, K. I., Lee, J., Kim, H., Shin, S., & Oh, J. (2016). Determination and characterization of pharmaceuticals in sludge from municipal and livestock wastewater treatment plants. Chemosphere, 168(2), 1211–1221. https://doi.org/10.1016/j.chemosphere.2016.10.077.

    CAS  Article  Google Scholar 

  9. Committee For Medicinal Products For Human Use (CHMP) Guideline on the environmental risk assessment of medicinal products for human use, Doc. Ref.: EMEA/CHMP/SWP/4447/00 corr 1, London, 01 June, 2006

  10. Feng, L., Van Hullebusch, E. D., Rodrigo, M. A., Esposito, G., & Oturan, M. A. (2013). Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review. Chemical Engineering Journal, 228, 944–964. https://doi.org/10.1016/j.cej.2013.05.061.

    CAS  Article  Google Scholar 

  11. Gamarra Jr., J. S., Godoi, A. F. L., De Vasconcelos, E. C., De Souza, K. M. T., & De Oliveira, C. M. R. (2015). Environmental risk assessment (ERA) of diclofenac and ibuprofen: a public health perspective. Chemosphere, 120, 462–469. https://doi.org/10.1016/j.chemosphere.2014.08.020.

    CAS  Article  Google Scholar 

  12. Gracia-Lor, E., Martinez, M., Sancho, J. V., Penuela, G., & Hernandez, F. (2012). Multi-class determination of personal care products and pharmaceuticals in environmental and wastewater samples by ultra-high performance liquid-chromatography-tandem mass spectrometry. Talanta, 99, 1011–1023. https://doi.org/10.1016/j.talanta.2012.07.091.

    CAS  Article  Google Scholar 

  13. Gulkowska, A., Leung, H. w., So, M. K., Taniyasu, S., Yamashita, N., Yeung, L. W. Y., et al. (2008). Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen , China. Water Research, 42, 395–403. https://doi.org/10.1016/j.watres.2007.07.031.

    CAS  Article  Google Scholar 

  14. Hashim, N. H., & Khan, S. J. (2011). Enantioselective analysis of ibuprofen , ketoprofen and naproxen in wastewater and environmental water samples. Journal of Chromatography A, 1218(29), 4746–4754. https://doi.org/10.1016/j.chroma.2011.05.046.

    CAS  Article  Google Scholar 

  15. Idder, S., Ley, L., Mazellier, P., & Budzinski, H. (2013). Quantitative on-line preconcentration-liquid chromatography coupled with tandem mass spectrometry method for the determination of pharmaceutical compounds in water. Analytica Chimica Acta, 805, 107–115. https://doi.org/10.1016/j.aca.2013.10.041.

    CAS  Article  Google Scholar 

  16. Kermia, A. E. B., Fouial-djebbar, D., & Trari, M. (2016). Occurrence, fate and removal efficiencies of pharmaceuticals in wastewater treatment plants (WWTPs) discharging in the coastal environment of Algiers. Comptes Rendus Chimie, 19(8), 963–970. https://doi.org/10.1016/j.crci.2016.05.005.

    CAS  Article  Google Scholar 

  17. Khamis, M., Karaman, R., Ayyash, F., Qtait, A., Deeb, O., & Manssra, A. (2011). Efficiency of advanced membrane wastewater treatment plant towards removal of aspirin, salicylic acid, paracetamol and p -aminophenol. Journal of Environmental Science & Engineering, 5, 121–137.

    CAS  Google Scholar 

  18. Kosjek, T., Heath, E., & Kompare, B. (2007). Removal of pharmaceutical residues in a pilot wastewater treatment plant. Analytical and Bioanalytical Chemistry, 387(4), 1379–1387. https://doi.org/10.1007/s00216-006-0969-1.

    CAS  Article  Google Scholar 

  19. Kosma, C. I., Lambropoulou, D. A., & Albanis, T. A. (2010). Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece. Journal of Hazardous Materials, 179, 804–817. https://doi.org/10.1016/j.jhazmat.2010.03.075.

    CAS  Article  Google Scholar 

  20. Langenhoff, A., Inderfurth, N., Veuskens, T., Schraa, G., Blokland, M., Kujawa-roeleveld, K., & Rijnaarts, H. (2013, 2013). Microbial removal of the pharmaceutical compounds Ibuprofen and Diclofenac from wastewater. BioMed Research International, 1–9.

  21. Larsson, E., Rabayah, A., & Jönsson, J. Å. (2013). Sludge removal of nonsteroidal anti-inflammatory drugs during wastewater treatment studied by direct hollow fiber liquid phase microextraction. Journal of Environmental Protection, 4, 946–955.

    Article  Google Scholar 

  22. Li, B., Zhang, T., Xu, Z., & Herbert, H. P. F. (2009). Rapid analysis of 21 antibiotics of multiple classes in municipal wastewater using ultra performance liquid chromatography-tandem mass spectrometry. Analytica Chimica Acta, 645, 64–72. https://doi.org/10.1016/j.aca.2009.04.042.

    CAS  Article  Google Scholar 

  23. Lin, A. Y., Yu, T., & Lateef, S. K. (2009). Removal of pharmaceuticals in secondary wastewater treatment processes in Taiwan. Journal of Hazardous Materials, 167, 1163–1169. https://doi.org/10.1016/j.jhazmat.2009.01.108.

    CAS  Article  Google Scholar 

  24. Lindholm-Lehto, P. C., Ahkola, H. S. J., Knuutinen, J. S., & Herve, S. H. (2016). Widespread occurrence and seasonal variation of pharmaceuticals in surface waters and municipal wastewater treatment plants in Central Finland. Environmental Science and Pollution Research, 23(8), 7985–7997. https://doi.org/10.1007/s11356-015-5997-y.

    CAS  Article  Google Scholar 

  25. Loraine, G. A., & Pettigrove, M. E. (2006). Seasonal variations in concentrations of pharmaceuticals and personal care products in drinking water and reclaimed wastewater in Southern California. Environmental Science & Technology, 40, 687–695.

    CAS  Article  Google Scholar 

  26. Lu, M.-C., Chen, Y. Y., Chiou, M.-R., Chen, M. Y., & Fan, H.-J. (2016). Occurrence and treatment efficiency of pharmaceuticals in landfill leachates. Waste Management, 55, 257–264. https://doi.org/10.1016/j.wasman.2016.03.029.

    CAS  Article  Google Scholar 

  27. Madikizela, L. M., & Chimuka, L. (2017a). Occurrence of naproxen, ibuprofen, and diclofenac residues in wastewater and river water of KwaZulu-Natal Province in South Africa. Environmental Monitoring and Assessment, 189, 348. https://doi.org/10.1007/s10661-017-6069-1.

    CAS  Article  Google Scholar 

  28. Madikizela, L. M., & Chimuka, L. (2017b). Simultaneous determination of naproxen, ibuprofen and diclofenac in wastewater using solid-phase extraction with high performance liquid chromatography. Water SA, 43(2), 264–274. https://doi.org/10.4314/wsa.v43i2.10.

    CAS  Article  Google Scholar 

  29. Madikizela, L. M., Muthwa, S. F., & Chimuka, L. (2014). Determination of triclosan and ketoprofen in river water and wastewater by solid phase extraction and high performance liquid chromatography. South African Journal of Chemistry, 67, 143–150.

    Google Scholar 

  30. Madikizela, L. M., Mdluli, P. S., & Chimuka, L. (2017). An initial assessment of naproxen, ibuprofen and diclofenac in Ladysmith water resources in South Africa using molecularly imprinted solid-phase extraction followed by high performance liquid chromatography-photodiode array detection. South African Journal of Chemistry, 70, 145–153. https://doi.org/10.17159/0379-4350/2017/v70a21.

    CAS  Article  Google Scholar 

  31. Mandaric, L., Diamantini, E., Stella, E., Cano-Paoli, K., Valle-Sistac, J., Molins-Delgado, D., et al. (2017). Contamination sources and distribution patterns of pharmaceuticals and personal care products in Alpine rivers strongly affected by tourism. Science of the Total Environment, 590–591(07), 484–494. https://doi.org/10.1016/j.scitotenv.2017.02.185.

    CAS  Article  Google Scholar 

  32. Martín, J., Camacho-mu, D., Santos, J. L., Aparicio, I., & Alonso, E. (2012). Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants : Removal and ecotoxicological impact of wastewater discharges and sludge disposal. Journal of Hazardous Materials, 239–240, 40–47. https://doi.org/10.1016/j.jhazmat.2012.04.068.

    CAS  Article  Google Scholar 

  33. Martínez-Alcalá, I., Guillén-Navarro, J. M., & Fernández-lópez, C. (2017). Pharmaceutical biological degradation , sorption and mass balance determination in a conventional activated-sludge wastewater treatment plant from Murcia , Spain. Chemical Engineering Journal, 316, 332–340. https://doi.org/10.1016/j.cej.2017.01.048.

    CAS  Article  Google Scholar 

  34. Mlunguza, N. Y., Ncube, S., Mahlambi, P. N., Chimuka, L., & Madikizela, L. M. (2019). Adsorbents and removal strategies of non-steroidal anti-inflammatory drugs from contaminated water bodies. Journal of Environmental Chemical Engineering, 7(3), 103142. https://doi.org/10.1016/j.jece.2019.103142.

    CAS  Article  Google Scholar 

  35. Modi, C. M., Mody, S. K., Patel, H. B., Dudhatra, G. B., Kumar, A., & Avale, M. (2012). Toxicopathological overview of analgesic and anti-inflammatory drugs in animals. Journal of Applied Pharmaceutical Science, 2(1), 149–157.

    Google Scholar 

  36. Nakada, N., Komori, K., & Suzuki, Y. (2005). Occurrence and fate of anti-inflammatory drugs in wastewater treatment plants in Japan. Environmental Sciences, 12(6), 359–369.

    CAS  Google Scholar 

  37. Oaks, J. L., Gilbert, M., Virani, M. Z., Watson, R. T., Meteyer, C. U., Rideout, B. A., et al. (2004). Diclofenac residues as the cause of vulture population decline in Pakistan. Letters to Nature, 427(02), 630–633.

    CAS  Article  Google Scholar 

  38. Petrovic, M., Lopez De Alda, M. J., Diaz-Cruz, S., Postigo, C., Radjenovic, J., Gros, M., & Barcelo, D. (2009). Fate and removal of pharmaceuticals and illicit drugs in conventional and membrane bioreactor wastewater treatment plants and by riverbank filtration. Philosophical Transactions of the Royal Society A, 367, 3979–4003. https://doi.org/10.1098/rsta.2009.0105.

    CAS  Article  Google Scholar 

  39. Praskova, E., Sevcikova, M., Živná, D., Štěpánová, S., Ševčíková, M., Blahová, J., et al. (2012). Acute toxicity of acetylsalicylic acid to juvenile and embryonic stages of Danio rerio and embryonic stages of Danio rerio. Neuroendocrinology Letters, 33(3), 71–76.

    Google Scholar 

  40. Praskova, E., Plhalova, L., Chromcova, L., Stepanova, S., Bedanova, I., Blahova, J., et al. (2014). Effects of subchronic exposure of diclofenac on growth, histopathological changes, and oxidative stress in zebrafish (Danio rerio). The Scientific World Journal, 2014, 1–5.

    Article  Google Scholar 

  41. Samaras, V. G., Stasinakis, A. S., Mamais, D., Thomaidis, N. S., & Lekkas, T. D. (2013). Fate of selected pharmaceuticals and synthetic endocrine disrupting compounds during wastewater treatment and sludge anaerobic digestion. Journal of Hazardous Materials, 244–245, 259–267. https://doi.org/10.1016/j.jhazmat.2012.11.039.

    CAS  Article  Google Scholar 

  42. Sanderson, H., Johnson, D. J., Wilson, C. J., Brain, R. A., & Solomon, K. R. (2003). Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids and algae by ECOSAR screening. Toxicology Letters, 144(3), 383–395. https://doi.org/10.1016/S0378-4274(03)00257-1.

    CAS  Article  Google Scholar 

  43. Shanmugam, G., Sampath, S., Selvaraj, K. K., Larsson, D. G. J., & Ramaswamy, B. R. (2014). Non-steroidal anti-inflammatory drugs in Indian rivers. Environmental Science and Pollution Research, 21, 921–931. https://doi.org/10.1007/s11356-013-1957-6.

    CAS  Article  Google Scholar 

  44. Sharma, K., & Kaushik, G. (2017). NSAIDS in the environment : From emerging problem to green solution. Annals of Pharmacology and Pharmaceutics, 2(14), 1–3.

    CAS  Google Scholar 

  45. Sim, W., Lee, J., & Oh, J. (2010). Occurrence and fate of pharmaceuticals in wastewater treatment plants and rivers in Korea. Environmental Pollution, 158, 1938–1947. https://doi.org/10.1016/j.envpol.2009.10.036.

    CAS  Article  Google Scholar 

  46. Sim, W., Lee, J., Lee, E., Shin, S., Hwang, S., & Oh, J. (2011). Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere, 82(2), 179–186. https://doi.org/10.1016/j.chemosphere.2010.10.026.

    CAS  Article  Google Scholar 

  47. Singh, K. P., Rai, P., Singh, A. K., Verma, P., & Gupta, S. (2014). Occurrence of pharmaceuticals in urban wastewater of north Indian cities and risk assessment. Environmental Monitoring and Assessment, 186(10), 6663–6682. https://doi.org/10.1007/s10661-014-3881-8.

    CAS  Article  Google Scholar 

  48. Sun, Q., Lv, M., Hu, A., Yang, X., & Yu, C. (2013). Seasonal variation in the occurrence and removal of pharmaceuticals and personal care products in a wastewater treatment plant in Xiamen, China. Journal of Hazardous Materials, 227, 69–75. https://doi.org/10.1016/j.jhazmat.2013.11.056.

    CAS  Article  Google Scholar 

  49. Szymonik, A., Lach, J., & Malińska, K. (2017). Fate and removal of pharmaceuticals and illegal drugs present in drinking water and wastewater. Ecological Chemistry and Engineering, 24(1), 65–85. https://doi.org/10.1515/eces-2017-0006.

    CAS  Article  Google Scholar 

  50. Tewari, S., Jindal, R., Kho, Y. L., Eo, S., & Choi, K. (2013). Major pharmaceutical residues in wastewater treatment plants and receiving waters in Bangkok, Thailand, and associated ecological risks. Chemosphere, 91(5), 697–704. https://doi.org/10.1016/j.chemosphere.2012.12.042.

    CAS  Article  Google Scholar 

  51. Vieno, N., & Sillanpää, M. (2014). Fate of diclofenac in municipal wastewater treatment plant - a review. Environment International, 69, 28–39. https://doi.org/10.1016/j.envint.2014.03.021.

    CAS  Article  Google Scholar 

  52. Xu, J., Wu, L., & Chang, A. C. (2017). Degradation and adsorption of selected pharmaceuticals and personal care products ( PPCPs ) in agricultural soils. Chemosphere, 2009, 1299–1305. https://doi.org/10.1016/j.chemosphere.2009.09.063.

    CAS  Article  Google Scholar 

  53. Yuan, X., Qiang, Z., Ben, W., Zhu, B., & Qu, J. (2015). Distribution, mass load and environmental impact of multiple-class pharmaceuticals in conventional and upgraded municipal wastewater treatment plants in East China. Environmental Science: Processes & Impacts, 17(3), 596–605. https://doi.org/10.1039/C4EM00596A.

    CAS  Article  Google Scholar 

  54. Zhang, X., Zhang, D., Lin, L., & Yan, C. (2013). Occurrence and risks of pharmaceuticals, personal care products and endocrine disruptors in Jiulongjiang river, South China. In 13th International Conference of Environmental Science and Technology Athens, Greece (pp. 1–7).

  55. Zunngu, S. S., Madikizela, L. M., Chimuka, L., & Mdluli, P. S. (2017). Synthesis and application of a molecularly imprinted polymer in the solid-phase extraction of ketoprofen from wastewater. Comptes Rendus Chimie, 20(5), 585–591. https://doi.org/10.1016/j.crci.2016.09.006.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Thalla.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 186 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thalla, A.K., Vannarath, A.S. Occurrence and environmental risks of nonsteroidal anti-inflammatory drugs in urban wastewater in the southwest monsoon region of India. Environ Monit Assess 192, 193 (2020). https://doi.org/10.1007/s10661-020-8161-1

Download citation

Keywords

  • Municipal wastewater treatment plant
  • Nonsteroidal anti-inflammatory drugs
  • Southwest monsoon region
  • Removal efficiency
  • Environmental risk assessment