Aquatic insects and their environmental predictors: a scientometric study focused on environmental monitoring in lotic environmental


Since early studies about aquatic ecology, it has been found that changes in environmental conditions alter aquatic insect communities. Based on this, the combined study of environmental conditions and aquatic insect communities has become an important tool to monitor and manage freshwater systems. However, there is no consensus about which environmental predictors and facets of diversity are more useful for environmental monitoring. The objective of this work was to conduct a scientometric analysis to identify the main environmental predictors and biological groups used to monitor and manage lotic freshwater systems. We conducted a scientometric study on the Web of Science platform using the following words: stream, river, aquatic insect, Ephemeroptera, Plecoptera, Trichoptera, Odonata, Heteroptera, Chironomidae, bioindicator, environmental change, anthropic, and land use. Although most of the environmental predictors employed are local, intrinsic of freshwater systems using local environmental and associated landscape variables is a better strategy to predict aquatic insect communities. The facets of diversity most used are composition and richness of species and genera, which are not efficient at measuring the loss of ecosystem services and extinction of phylogenetic lineages. Although very important, these functional and phylogenetic facets are poorly explored for this purpose. Even though tropical regions are the most diverse globally and are experiencing major losses of native vegetation, these ecosystems are the least studied, a knowledge gap that needs addressing to better understand the effect of anthropogenic activities on the diversity of aquatic insects.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Allan, J. D. (2004). Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics.

  2. Allan, J., & Johnson, L. (1997). Catchment-scale analysis of aquatic ecosystems. Freshwater Biology.

  3. Allan, D., Erickson, D., & Fay, J. (1997). The influence of catchment land use on stream integrity across multiple spatial scales. Freshwater Biology, 37(1), 149–161.

    Article  Google Scholar 

  4. Astorga, A., Heino, J., Luoto, M., & Muotka, T. (2011). Freshwater biodiversity at regional extent: determinants of macroinvertebrate taxonomic richness in headwater streams. Ecography.

  5. Boyero, L. (2002). Insect biodiversity in freshwater ecosystems: is there any latitudinal gradient? Marine and Freshwater Research.

  6. Brasil, L. S., Vieira, T. B., de Oliveira-Junior, J. M. B., Dias-Silva, K., & Juen, L. (2017). Elements of metacommunity structure in Amazonian Zygoptera among streams under different spatial scales and environmental conditions. Ecology and Evolution.

  7. Brasil, L. S., Silverio, D. V., Cabette, H. S. R., Batista, J. D., Vieira, T. B., Dias-Silva, K., & Juen, L. (2019). Net primary productivity and seasonality of temperature and precipitation are predictors of the species richness of the Damselflies in the Amazon. Basic and Applied Ecology.

  8. Carvalho, F. G., de Oliveira Roque, F., Barbosa, L., de Assis Montag, L. F., & Juen, L. (2018). Oil palm plantation is not a suitable environment for most forest specialist species of Odonata in Amazonia. Animal Conservation.

  9. Chi, S., Li, S., Chen, S., Chen, M., Zheng, J., & Hu, J. (2017). Temporal variations in macroinvertebrate communities from the tributaries in the Three Gorges Reservoir Catchment, China. Revista Chilena de Historia Natural, 90, 1–11.

    Article  Google Scholar 

  10. Cunha, E. J., & Juen, L. (2017). Impacts of oil palm plantations on changes in environmental heterogeneity and Heteroptera (Gerromorpha and Nepomorpha) diversity. Journal of Insect Conservation, 21, 111–119.

    Article  Google Scholar 

  11. Cunha, E. J., Montag, L. F. A., & Juen, L. (2015). Oil palm crops effects on environmental integrity of Amazonian streams and Heteropteran (Hemiptera) species diversity. Ecological Indicators.

  12. Dias-Silva, K., Cabette, H. S., Juen, L., & De Marco Jr, P. (2010). The influence of habitat integrity and physical-chemical water variables on the structure of aquatic and semi-aquatic Heteroptera. Zoologia.

  13. Faria, A. P. J., Ligeiro, R., Callisto, M., & Juen, L. (2017). Response of aquatic insect assemblages to the activities of traditional populations in eastern Amazonia. Hydrobiologia, 802, 39–51.

    Article  Google Scholar 

  14. Gál, B., Szivák, I., Heino, J., & Schmera, D. (2019). The effect of urbanization on freshwater macroinvertebrates–knowledge gaps and future research directions. Ecological Indicators, 104, 357–364.

    Article  Google Scholar 

  15. Grönroos, M., Heino, J., Siqueira, T., Landeiro, V. L., Kotanen, J., & Bini, L. M. (2013). Metacommunity structuring in stream networks: roles of dispersal mode, distance type, and regional environmental context. Ecology and Evolution, 3(13), 4473–4487.

    Article  Google Scholar 

  16. Heino, J., Melo, A. S., Jyrkänkallio-Mikkola, J., Petsch, D. K., Saito, V. S., Tolonen, K. T., et al. (2018). Subtropical streams harbour higher genus richness and lower abundance of insects compared to boreal streams, but scale matters. Journal of Biogeography.

  17. Hutchinson, G. E. (1959). Homage to Santa Rosalia or why are there so many kinds of animals? The American Naturalist, 93(870), 145–159.

    Article  Google Scholar 

  18. Junk, W. J., Bayley, P. B., & Sparks, R. E. (1989). The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences, 106(1), 110–127.

    Google Scholar 

  19. Kim, J. Y., Joo, G. J., Kim, H. W., Kim, G. Y., & Do, Y. (2016). A scientometric study of the limnological societies: inferences of research collaboration and core topics based on publication networks. Inland Waters.

  20. Kwok, K. W., Leung, K. M., Lui, G. S., Chu, V. K., Lam, P. K., Morritt, D., et al. (2007). Comparison of tropical and temperate freshwater animal species’ acute sensitivities to chemicals: implications for deriving safe extrapolation factors. Integrated Environmental Assessment and Management: An International Journal.

  21. Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., ... & Loreau, M. (2004). The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters, 7(7), 601–613.

  22. Ligeiro, R., Hughes, R. M., Kaufmann, P. R., Macedo, D. R., Firmiano, K. R., Ferreira, W. R., Oliveira, D., et al. (2013). Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness. Ecological Indicators.

  23. Macedo, M. N., Coe, M. T., DeFries, R., Uriarte, M., Brando, P. M., Neill, C., & Walker, W. S. (2013). Land-use-driven stream warming in southeastern Amazonia. Philosophical Transactions of the Royal Society, B: Biological Sciences.

  24. Malmqvist, B. (2002). Aquatic invertebrates in riverine landscapes. Freshwater Biology.

  25. Martins, R. T., Couceiro, S. R., Melo, A. S., Moreira, M. P., & Hamada, N. (2017). Effects of urbanization on stream benthic invertebrate communities in Central Amazon. Ecological Indicators.

  26. Mehari, A. K., Wondie, A., Mingist, M., & Vijverberg, J. (2014). Spatial and seasonal variation in the macro-invertebrates and physico-chemical parameters of the Enfranz River, Lake Tana sub-basin (Ethiopia). Ecohydrology & Hydrobiology.

  27. Miguel, T. B., Oliveira-Junior, J. M. B., Ligeiro, R., & Juen, L. (2017). Odonata (Insecta) as a tool for the biomonitoring of environmental quality. Ecological Indicators.

  28. Miller, S. W., Budy, P., & Schmidt, J. C. (2010). Quantifying macroinvertebrates responses to in-stream habitat restorarion: applications of meta-analysis to river restorarion. Restoration Ecology.

  29. Mingers, J., & Leydesdorff, L. (2015). A review of theory and practice in scientometrics. European Journal of Operational Research.

  30. Naiman, R. J., & Decamps, H. (1997). The ecology of interfaces: riparian zones. Annual Review of Ecology and Systematics, 28(1), 621–658.

    Article  Google Scholar 

  31. Oliveira-Junior, J. M. B., Shimano, Y., Gardner, T. A., Hughes, R. M., de Marco Júnior, P., & Juen, L. (2015). Neotropical dragonflies (Insecta: Odonata) as indicators of ecological condition of small streams in the eastern Amazon. Austral Ecology.

  32. Paiva, C. K. S., Faria, A. P. J., Calvão, L. B., & Juen, L. (2017). Effect of oil palm on the Plecoptera and Trichoptera (Insecta) assemblages in streams of eastern Amazon. Environmental Monitoring and Assessment, 189, 1–9.

    CAS  Article  Google Scholar 

  33. Péru, N., & Dolédec, S. (2010). From compositional to functional biodiversity metrics in bioassessment: a case study using stream macroinvertebrate communities. Ecological Indicators.

  34. Polegatto, C. M., & Froehlich, C. P. (2003). Feeding strategies. In E. Gaino (Ed.), Atalophlebiinae (Ephemeroptera: Leptophlebiidae), with considerations on scraping and filtering. Research Update on Ephemeroptera & Plecoptera (pp. 55–61). Perugia: University of Perugia.

    Google Scholar 

  35. Resh, V. H., & Unzicker, J. D. (1975). Water quality monitoring and aquatic organisms: the importance of species identification. Journal - Water Pollution Control Federation, 9–19.

  36. Ricklefs, R. E. (1987). Community diversity: relative roles of local and regional processes. Science, 235, 167–171.

    CAS  Article  Google Scholar 

  37. Rodrigues, M. E., de Oliveira Roque, F., Quintero, J. M. O., de Castro Pena, J. C., de Sousa, D. C., & Junior, P. D. M. (2016). Nonlinear responses in damselfly community along a gradient of habitat loss in a savanna landscape. Biological Conservation.

  38. Roque, F. O., Lecci, L. S., Siqueira, T., & Froehlich, C. G. (2008). Using environmental and spatial filters to explain stonefly occurrences in southeastern Brazilian streams: implications for biomonitoring. Acta Limnologica Brasiliensia, 20(1), 117–130.

    Google Scholar 

  39. Sabater, S., Bregoli, F., Acuña, V., Barcelo, D., Elosegi, A., Ginebreda, A., Marcé, R., Muñoz, I., Sabater-Liesa, L., & Ferreira, V. (2018). Effect of human-driven water stress on river ecosystems: a meta-analysis. Nature, 8, 1–11.

    CAS  Article  Google Scholar 

  40. Siegloch, A. E., Schmitt, R., Spies, M., Petrucio, M., & Hernández, M. I. M. (2017). Effects of small changes in riparian forest complexity on aquatic insect bioindicators in Brazilian subtropical streams. Marine and Freshwater Research.

  41. Soininen, J. (2014). A quantitative analysis of species sorting across organisms and ecosystems. Ecology, 95(12), 3284–3292.

    Article  Google Scholar 

  42. Song, X. P., Hansen, M. C., Stehman, S. V., Potapov, P. V., Tyukavina, A., Vermote, E. F., & Townshend, J. R. (2018). Global land change from 1982 to 2016. Nature.

  43. Steinman, D., & Denning, R. (2005). The role of spatial heterogeneity in the management of freshwater resources. In G. M. Lovett, C. G. Jones, M. G. Turner, & K. C. Weathers (Eds.), Ecosystem function in heterogeneous landscapes (pp. 367–387). New York: Springer.

    Google Scholar 

  44. Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37(1), 130–137.

    Article  Google Scholar 

  45. Vinson, M. R., & Hawkins, C. P. (2003). Broad-scale geographical patterns in local stream insect genera richness. Ecography, 26, 751–767.

    Article  Google Scholar 

  46. Wantzen, K. M., Ramírez, A., & Winemiller, K. O. (2006). New vistas in Neotropical stream ecology-preface. Journal of the North American Benthological Society, 25, 61–65.

    Article  Google Scholar 

Download references


L.S.B. thanks to “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior” (CAPES) for the Postdoctoral Scholarship (Process 086/2013). L.J. receives continuous research support from “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq) productivity grants (Process 304710/2019-9). A.L.A. thanks to “CNPq” for the Doctoral Scholarship (141991/2016-0). L.B.C. and A.P.J.F. thank BRC consortium and Norsk Hydro for financial support and L.B.C. the CNPq Postdoctoral Scholarship (process 154761/2018-4). J.M.B.O.J. thanks Universidade Federal do Oeste do Pará (Ufopa) for his authorization toleave the country to participate in the Postdoctoral Internship at the Universidade do Algarve/CCMAR, Portugal (Ordinance No. 708/GR-Ufopa of 27 November 2018, rectified by No. 178, of 4 April 2019).

Author information



Corresponding author

Correspondence to Leandro Schlemmer Brasil.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 109 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brasil, L.S., Luiza-Andrade, A., Calvão, L.B. et al. Aquatic insects and their environmental predictors: a scientometric study focused on environmental monitoring in lotic environmental. Environ Monit Assess 192, 194 (2020).

Download citation


  • Environmental change
  • EPT
  • Land use
  • Spatial scale