Skip to main content

Advertisement

Log in

Bacterial metagenome analysis of Mytilus galloprovincialis collected from Istanbul and Izmir coastal stations of Turkey

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Mytilus galloprovincialis is a marine mollusk belonging to the Bivalvia class. It has been distributed largely in Turkish shores and worldwide aquatic environments. Besides being known as an environmental pollution indicator, it is highly consumed as a food and has a high economic value. Due to their nutritional mechanisms by filtering water, they are affected by pollution in seawater and mussels can host-microbial diversity of environmental origin as well as pathogenic bacteria. Therefore, in this study, bacterial species found in Mediterranean mussels collected from the coastal stations of Istanbul [Rumeli Kavagi (RK), Kucukcekmece (KC)], and Izmir [(Foca (MF), Urla (MU)] were investigated and compared with microbiological and metagenomic analyses. According to microbiological analysis results, 34 mussel-associated Enterobacteriaceae and Vibrionaceae family members were identified. As a result of the culture-independent metagenomic analysis, taxonomic groups for each station were identified and compared based on Operational Taxonomic Unit data. For all stations, the most abundant bacterial genera were the unclassified bacterial genera. The total number of mussel-related total richness identified in all groups was 4889 (RK = 1605; KC = 1930; MF = 1508; and MU = 1125). According to the metagenomic data obtained in this study, different relative amounts of Lachnospiraceae and Bacteroidetes taxa groups were reported for all stations. The pathogenic bacterial genera identified by metagenomic analyses which may be significant for the public health are Arcobacter, Clostridium, Aeromonas, Vibrio, Escherichia_Shigella, Klebsiella, Campylobacter, Helicobacter, Pseudomonas, Morganella, Serratia, Corynebacterium, Enterococcus, Staphylococcus, Yersinia, Mycoplasma, Brucellaceae_unclassified, Pantoea, and Proteus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abayasekara, L. M., Perera, J., Chandrasekharan, V., Gnanam, V. Z., Udunuwara, N. A., et al. (2017). Detection of bacterial pathogens fromclinical specimens using conventional microbial culture and 16S metagenomics: a comparative study. BMC Infectious Diseases, 17, 631.

    Article  CAS  Google Scholar 

  • Aksoy, U., Marangi, M., Papini, R., Ozkoc, S., Bayram Delibas, S., & Giangaspero, A. (2014). Detection of toxoplasma gondii and Cyclospora cayetanensis in Mytilus galloprovincialis from Izmir province coast (Turkey) by real time PCR/high-resolution melting analysis (HRM). Food Microbiology, 44, 128–135.

    Article  CAS  Google Scholar 

  • Altug, G., & Guler, N. (2002). Determination of the levels of indicator bacteria, Salmonella spp. and heavy metals in sea snails (Rapana venosa) from the Northern Marmara Sea, Turkey. Turkish J Fish Aquat Sci, 2, 141–144.

    Google Scholar 

  • Araj, G. F., Taleb, R., El Beayni, N. K., & Goksu, E. (2019). Vibrio albensis: An unusual urinary tract infection in a healthy male. Journal of Infection and Public Health.

  • Arfken, A., Song, B., Bowman, J. S., & Piehler, M. (2017). Denitrification potential of the eastern oyster microbiome using a 16S rRNA gene based metabolic inference approach. PLoS One, 12(9), e0185071.

    Article  CAS  Google Scholar 

  • Balbi, T., Auguste, M., Cortese, K., Montagna, M., Borello, A., Pruzzo, C., Vezzulli, L., & Canesi, L. (2019). Responses of Mytilus galloprovincialis to challenge with the emerging marine pathogen Vibrio coralliilyticus. Fish & Shellfish Immunology, 84, 352–360.

    Article  CAS  Google Scholar 

  • Balcioglu, E. B., & Gonulal, O. (2017). A study on biometry of mussels (Mytilus galloprovincialis, Lamarck,1819) collected from various regions of Marmara Sea. Suleyman Demirel University Journal of Natural and Applied Sciences, 21(2), 397–400.

    Google Scholar 

  • Berendes, D. M., Kirby, A. E., Clennon, J. A., Agbemabiese, C., Ampofo, J. A., Armah, G. E., Baker, K. K., Liu, P., Reese, H. E., Robb, K. A., Wellington, N., Yakubu, H., & Moe, C. L. (2018). Urban sanitation coverage and environmental fecal contamination: links between the household and public environments of Accra, Ghana. PLoS One, 13(7), e0199304.

    Article  CAS  Google Scholar 

  • Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics., 30(15), 2114–2120.

    Article  CAS  Google Scholar 

  • Bozcal, E., Dagdeviren, M., Uzel, A., & Skurnik, M. (2017). LuxCDE-luxAB-based promoter reporter system to monitor the Yersinia enterocolitica O:3 gene expression in vivo. PLoS One, 12(2), e0172877.

    Article  CAS  Google Scholar 

  • Cappello, S., Volta, A., Santisi, S., Genovese, L., Maricchiolo, G., Bonsignore, M., et al. (2015). Study of bacterial communities in mussel Mytilus galloprovincialis (Bivalvia: Mytilidae) by a combination of 16s crDNA and 16s rDNA sequencing. JSM Microbiology, 3(1), 1016.

    Google Scholar 

  • Cole, J. R., Wang, Q., Fish, J. A., Chai, B., McGarrell, D. M., Sun, Y., et al. (2014). Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Research, 42(D1), 633–642.

    Article  CAS  Google Scholar 

  • Collado, L., Guarro, J., & Figueras, M. J. (2009). Prevalence of Arcobacter in meat and shellfish. Journal of Food Protection, 72(5), 1102–1106.

    Article  Google Scholar 

  • Craft, J. A., Gilbert, J. A., Temperton, B., Dempsey, K. E., Ashelford, K., et al. (2010). Pyrosequencing of Mytilus galloprovincialis cDNAs: tissue-specific expression patterns. PLoS One, 5(1), e8875.

    Article  CAS  Google Scholar 

  • De Sousa, O. V., Vieira, R. H., De Menezes, F. G., Dos Reis, C. M., & Hofer, E. (2004). Detection of Vibrio parahaemolyticus and Vibrio cholerae in oyster, Crassostrea rhizophorae, collected from a natural nursery in the coco river estuary, Fortaleza, Ceara. Brazil. Rev. Inst. Med. Trop. Sao Paulo., 46(2), 59–62.

    Article  Google Scholar 

  • Drzewiecka, D. (2016). Significance and roles of Proteus spp. bacteria in natural environments. Microbial Ecology, 72(4), 741–758.

    Article  CAS  Google Scholar 

  • Duman, M., Saticioglu, I. B., & Altun, S. (2019). Molecular characterization and antimicrobial resistance profile of fecal contaminants and spoilage bacteria that emerge in rainbow trout (Oncorhynchus mykiss) farms. Bioscience of Microbiota Food and Health., 38(2), 41–48.

    Article  CAS  Google Scholar 

  • Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics., 27(16), 2194–2200.

    Article  CAS  Google Scholar 

  • Eggermont, M., Bossier, P., Sasmita, G., Pande, J., Delahaut, V., Gupta, N., et al. (2017). Isolation of Vibrionaceae from wild blue mussel (Mytilus edulis) adults and their impact on blue mussel larviculture. FEMS Microbiology Ecology, 93(4), 39.

    Article  CAS  Google Scholar 

  • Erol, N., Delibas, S. B., Ozkoc, S., Erguden, C., & Aksoy, U. (2016). Investigation of parasitic and viral pathogens in mussels (Mytilus galloprovincialis) in the Gulf of Izmir, Turkey. Saudi Medical Journal, 37(6), 703–706.

    Article  Google Scholar 

  • Escobedo-Hinojosa, W., & Pardo-Lopez, L. (2017). Analysis of bacterial metagenomes from the Southwestern Gulf of Mexico for pathogens detection. Pathogens and Disease, 75(5).

  • Fernandez-Delgado, M., Contreras, M., Garcia-Amado, M. A., Gueneau, P., & Suarez, P. (2007). Occurrence of Proteus mirabilis associated with two species of Venezuelan oysters. Revista do Instituto de Medicina Tropical de São Paulo., 49(6), 355–359.

    Article  Google Scholar 

  • Frank, J. A., Reich, C. I., Sharma, S., Weisbaum, J. S., Wilson, B. A., & Olsen, G. J. (2008). Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Applied and Environmental Microbiology, 74(8), 2461–2470.

    Article  CAS  Google Scholar 

  • Gensberger, E. T., Gossl, E. M., Antonelli, L., Sessitsch, A., & Kostic, T. (2015). Effect of different heterotrophic plate count methods on the estimation of the composition of the culturable microbial community. PeerJ, 3, e862.

    Article  CAS  Google Scholar 

  • Gilbert, J. A., Field, D., Huang, Y., Edwards, R., Li, W., Glina, P., et al. (2008). Detection of large numbers of novel sequences in the metatranscriptomes of complex marine microbial communities. PLoS One, 3(8), e3042.

    Article  CAS  Google Scholar 

  • Goulas, A. E., Chouliara, I., Nessi, E., Kontominas, M. G., & Savvaidis, I. N. (2005). Microbiological, biochemical and sensory assessment of mussels (Mytilus galloprovincialis) stored under modified atmosphere packaging. Journal of Applied Microbiology, 98(3), 752–760.

    Article  CAS  Google Scholar 

  • Grevskott, D. H., Svanevik, C. S., Wester, A. L., & Lunestad, B. T. (2016). The species accuracy of the most probable number (MPN) European Union reference method for enumeration of Escherichia coli in marine bivalves. Journal of Microbiological Methods, 131, 73–77.

    Article  Google Scholar 

  • Grevskott, D. H., Svanevik, C. S., Sunde, M., Wester, A. L., & Lunestad, B. T. (2017). Marine bivalve mollusks as possible indicators of multidrug-resistant Escherichia coli and other species of the Enterobacteriaceae family. Frontiers in Microbiology, 8, 24.

    Article  Google Scholar 

  • Gugliandolo, C., Lentini, V., Spano, A., & Maugeri, T. L. (2011). Conventional and molecular methods to detect bacterial pathogens in mussels. Letters in Applied Microbiology, 52(1), 15–21.

    Article  CAS  Google Scholar 

  • Hernroth, B., Lothigius, A., & Bolin, I. (2010). Factors influencing survival of enterotoxigenic Escherichia coli, Salmonella enterica (serovar Typhimurium) and Vibrio parahaemolyticus in marine environments. FEMS Microbiology Ecology, 71(2), 272–280.

    Article  CAS  Google Scholar 

  • Hiergeist, A., Glasner, J., Reischl, U., & Gessner, A. (2015). Analyses of intestinal microbiota: culture versus sequencing. ILAR Journal., 56(2), 228–240.

    Article  CAS  Google Scholar 

  • Iino, T., Mori, K., Uchino, Y., Nakagawa, T., Harayama, S., & Suzuki, K. (2010). Ignavibacterium album gen. nov., sp. nov., a moderately thermophilic anaerobic bacterium isolated from microbial mats at a terrestrial hot spring and proposal of Ignavibacteria classis nov., for a novel lineage at the periphery of green sulfur bacteria. International Journal of Systematic and Evolutionary Microbiology, 60(6), 1376–1382.

    Article  CAS  Google Scholar 

  • Kacar, A. (2011). Some microbial characteristics of mussels (Mytilus galloprovincialis) in coastal city area. Environmental Science and Pollution Research, 18(8), 1384–1389.

    Article  CAS  Google Scholar 

  • Kayhan, F. E., Sesal, N. C., & Guldur, S. (2016). The identification of gram-negative bacterial flora of black mussel (Mytilus galloprovincialis). Marmara Fen Bilim Derg., 28(2), 66–69.

    Google Scholar 

  • King, G. M., Judd, C., Kuske, C. R., & Smith, C. (2012). Analysis of stomach and gut microbiomes of the Eastern oyster (Crassostrea virginica) from coastal Louisiana, USA. PLoS One, 7(12), e51475.

    Article  CAS  Google Scholar 

  • Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., et al. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 41(1), 1–11.

    Article  CAS  Google Scholar 

  • Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., & Schloss, P. D. (2013). Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Applied and Environmental Microbiology, 79(17), 5112–5120.

    Article  CAS  Google Scholar 

  • Kucuksezgin, F., Kontas, A., Altay, O., Uluturhan, E., & Darilmaz, E. (2006). Assessment of marine pollution in Izmir Bay: nutrient, heavy metal and total hydrocarbon concentrations. Environment International, 32(1), 41–51.

    Article  CAS  Google Scholar 

  • Li, Y. F., Xu, J. K., Chen, Y. W., Ding, W. Y., Shao, A. Q., Liang, X., et al. (2019). Characterization of gut microbiome in the mussel Mytilus galloprovincialis in response to the thermal stress. Frontiers in Physiology, 10, 1086.

    Article  Google Scholar 

  • Liu, H., Zhu, J., Hu, Q., & Rao, X. (2016). Morganella morganii, a non-negligent opportunistic pathogen. International Journal of Infectious Diseases, 50, 10–17.

    Article  Google Scholar 

  • Liyanage, C. P., & Yamada, K. (2017). Impact of population growth on the water quality of natural water bodies. Sustain, 9(8), 1405 1-14.

    Article  Google Scholar 

  • Mannas, H., Mimouni, R., Chaouqy, N., Hamadi, F., & Martinez-Urtaza, J. (2014). Occurrence of Vibrio and Salmonella species in mussels (Mytilus galloprovincialis) collected along the Moroccan Atlantic coast. Springerplus., 3(1), 1–11.

    Article  Google Scholar 

  • Marcinkiewicz, A. L., Schuster, B. M., Jones, S. H., Cooper, V. S., & Whistler, C. A. (2017). Bacterial community profiles and Vibrio parahaemolyticus abundance in individual oysters and their association with estuarine ecology. bioRxiv, 156851.

  • Matozzo, V., Ercolini, C., Serracca, L., Battistini, R., Rossini, I., Granato, G., Quaglieri, E., Perolo, A., Finos, L., Arcangeli, G., Bertotto, D., Radaelli, G., Chollet, B., Arzul, I., & Quaglio, F. (2018). Assessing the health status of farmed mussels (Mytilus galloprovincialis) through histological, microbiological and biomarker analyses. Journal of Invertebrate Pathology, 153, 165–179.

    Article  CAS  Google Scholar 

  • Miotto, M., Ossai, S. A., Meredith, J. E., Barretta, C., Kist, A., Prudencio, E. S., R W Vieira, C., & Parveen, S. (2019). Genotypic and phenotypic characterization of Escherichia coli isolated from mollusks in Brazil and the United States. Microbiologyopen., 8(5), e00738.

    Article  CAS  Google Scholar 

  • Normanno, G., Parisi, A., Addante, N., Quaglia, N. C., Dambrosio, A., Montagna, C., & Chiocco, D. (2006). Vibrio parahaemolyticus, Vibrio vulnificus and microorganisms of fecal origin in mussels (Mytilus galloprovincialis) sold in the Puglia region (Italy). International Journal of Food Microbiology, 106(2), 219–222.

    Article  CAS  Google Scholar 

  • O’Callaghan, A., & van Sinderen, D. (2016). Bifidobacteria and their role as members of the human gut microbiota. Frontiers in Microbiology, 7, 925.

    Google Scholar 

  • Offret, C., Jegou, C., Mounier, J., Fleury, Y., & Le Chevalier, P. (2019). New insights into the haemo- and coelo-microbiota with antimicrobial activities from Echinodermata and Mollusca. Journal of Applied Microbiology, 126(4), 1023–1031.

    Article  CAS  Google Scholar 

  • Onarinde, B. A., & Dixon, R. A. (2018). Prospects for biocontrol of Vibrio parahaemolyticus contamination in blue mussels (Mytilus edulis)-a year-long study. Frontiers in Microbiology, 9, 1043.

    Article  Google Scholar 

  • Ozkan, D., Dagdeviren, M., Katalay, S., Guner, A., & Yavasoglu, N. U. (2017). Multi-biomarker responses after exposure to pollution in the Mediterranean mussels (Mytilus galloprovincialis L.) in the Aegean coast of Turkey. Bulletin of Environment Contamination and Toxicology, 98(1), 46–52.

    Article  CAS  Google Scholar 

  • Papadopoulou, C., Economou, E., Zakas, G., Salamoura, C., Dontorou, C., & Apostolou, J. (2007). Microbiological and pathogenic contaminants of seafood in Greece. Journal of Food Quality, 30(1), 28–42.

    Article  Google Scholar 

  • Pfister, C. A., Meyer, F., & Antonopoulos, D. A. (2010). Metagenomic profiling of a microbial assemblage associated with the California mussel: a node in networks of carbon and nitrogen cycling. PLoS One, 5(5), e10518.

    Article  CAS  Google Scholar 

  • Pruesse, E., Peplies, J., & Glockner, F. O. (2012). SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics, 28, 1823–1829.

    Article  CAS  Google Scholar 

  • Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41(D1), 590–596.

    Article  CAS  Google Scholar 

  • Reis, R. S., & Horn, F. (2010). Enteropathogenic Escherichia coli, Samonella, Shigella and Yersinia: cellular aspects of host-bacteria interactions in enteric diseases. Gut Pathog., 2(1), 8.

    Article  CAS  Google Scholar 

  • Rippey, S. R. (1994). Infectious diseases associated with molluscan shellfish consumption. Clinical Microbiology Reviews, 7(4), 419–425.

    Article  CAS  Google Scholar 

  • Romanenko, L. A., Uchino, M., Kalinovskaya, N. I., & Mikhailov, V. V. (2008). Isolation, phylogenetic analysis and screening of marine mollusc-associated bacteria for antimicrobial, hemolytic and surface activities. Microbiological Research, 163(6), 633–644.

    Article  Google Scholar 

  • Rubini, S., Galletti, G., D’Incau, M., Govoni, G., Boschetti, L., Berardelli, C., et al. (2018). Occurrence of Salmonella enterica subsp. enterica in bivalve molluscs and associations with Escherichia coli in molluscs and faecal coliforms in seawater. Food Control, 84, 429–435.

    Article  Google Scholar 

  • Salvesen, I., & Vadstein, O. (2000). Evaluation of plate count methods for determination of maximum specific growth rate in mixed microbial communities, and its possible application for diversity assessment. Journal of Applied Microbiology, 88, 442–448.

    Article  CAS  Google Scholar 

  • Santo Domingo, J. W., & Edge, T. A. (2010). Identification of primary sources of faecal pollution. In G. Rees et al. (Eds.), Safe management of shellfish and harvest waters (Vol. Chapter 5, pp. 51–91). London: IWA Publishing.

    Google Scholar 

  • Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., van Horn, D., & Weber, C. F. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23), 7537–7541.

    Article  CAS  Google Scholar 

  • Sengor, G. F., Kalafatoglu, H., & Gun, H. (2004). The determination of microbial flora, water activity and chemical analyses in smoked, canned mussels (Mytilus galloprovincialis, L.). Turkish Journal of Veterinary and Animal Sciences, 28, 793–797.

    Google Scholar 

  • Thomas, T., Gilbert, J., & Meyer, F. (2012). Metagenomics - a guide from sampling to data analysis. Microbial Informatics and Experimentation, 2(1), 3.

    Article  Google Scholar 

  • Utermann, C., Parrot, D., Breusing, C., Stuckas, H., Staufenberger, T., Blumel, M., et al. (2018). Combined genotyping, microbial diversity and metabolite profiling studies on farmed Mytilus spp. from Kiel Fjord. Scientific Reports, 8(1), 7983.

    Article  CAS  Google Scholar 

  • Vernocchi, P., Maffei, M., Lanciotti, R., Suzzi, G., & Gardini, F. (2007). Characterization of Mediterranean mussels (Mytilus galloprovincialis) harvested in Adriatic Sea (Italy). Food Control, 18(12), 1575–1583.

    Article  CAS  Google Scholar 

  • Vezzulli, L., Stagnaro, L., Grande, C., Tassistro, G., Canesi, L., & Pruzzo, C. (2018). Comparative 16SrDNA gene-based microbiota profiles of the Pacific oyster (Crassostrea gigas) and the Mediterranean mussel (Mytilus galloprovincialis) from a shellfish farm (Ligurian Sea, Italy). Microbial Ecology, 75(2), 495–504.

    Article  CAS  Google Scholar 

  • Vieira, R. H., Lima, E. A., Sousa, D. B., Reis, E. F., Costa, R. G., & Rodrigues Ddos, P. (2004). Vibrio spp. and Salmonella spp., presence and susceptibility in crabs Ucides cordatus. Revista do Instituto de Medicina Tropical de São Paulo, 46(4), 179–182.

    Article  Google Scholar 

  • Wilmes, P., & Bond, P. L. (2006). Metaproteomics: studying functional gene expression in microbial ecosystems. Trends in Microbiology, 14(2), 92–97.

    Article  CAS  Google Scholar 

  • Yilmaz, F., Savci, S., Pazar-Yildirim, E., Gonullu, N., Bavunoglu, I., Koksal-Cakirlar, F., et al. (2015). A catheter related sepsis case caused by Pantoea agglomerans. Turk Hij Den Biyol Derg., 72(1), 59–62.

    Article  Google Scholar 

  • Zannella, C., Mosca, F., Mariani, F., Franci, G., Folliero, V., Galdiero, M., et al. (2017). Microbial diseases of bivalve mollusks: infections, immunology and antimicrobial defense. Marine Drugs, 15(6), 182.

    Article  Google Scholar 

Download references

Funding

The authors received financial support from Istanbul University BAP unit for the project under FBA-2018-30817 code. Authors used the facilities of BM Labosis (Ankara, Turkey) for Sanger Sequencing. The meta-data analysis and numerical calculations reported in this paper were partially carried out at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elif Bozcal.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This study was partly presented as a poster at the EMBO|EMBL Symposium: New Approaches and Concepts in Microbiology, 10–13 July 2019, Heidelberg-Germany.

Electronic supplementary material

ESM 1

(XLSX 55 kb)

ESM 2

(XLSX 62 kb)

ESM 3

(XLSX 55 kb)

ESM 4

(XLSX 59 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozcal, E., Dagdeviren, M. Bacterial metagenome analysis of Mytilus galloprovincialis collected from Istanbul and Izmir coastal stations of Turkey. Environ Monit Assess 192, 186 (2020). https://doi.org/10.1007/s10661-020-8129-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-8129-1

Keywords

Navigation