Investigating the relationship between synergistic effects and diversity of four widely used agricultural pesticides by using bacterial species in liquid culture medium

Abstract

Interactive effects of mixtures of pesticides on bacteria are rarely investigated. The aim of this study was to investigate the cumulative, synergistic, and antagonistic effects of four widely used agricultural pesticides including deltamethrin, diazinon, chlorpyrifos, and 2,4-dichlorophenoxyacetic acid (2,4-D) on Pseudomonas, Aeromonas, and Bacillus bacteria. The reduction of alamar blue, as an indicator of bacterial activity, was measured using a spectrophotometer at 600-nm wavelength. Data were analyzed using SPSS 24.0 software. The binary mixtures of pesticides had mainly antagonistic and additive effects, but quadruple mixtures of pesticides had synergistic effects on all of the three bacterial species. In the mixtures of pesticides, increasing the number of compounds leads to more synergistic effects.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Cedergreen, N. (2014). Quantifying synergy: A systematic review of mixture toxicity studies within environmental toxicology. PloS one, 9(5), e96580.

    Article  Google Scholar 

  2. Corbel, V., Stankiewicz, M., Bonnet, J., Grolleau, F., Hougard, J. M., & Lapied, B. (2006). Synergism between insecticides permethrin and propoxur occurs through activation of presynaptic muscarinic negative feedback of acetylcholine release in the insect central nervous system. Neurotoxicology, 27, 508–519.

    CAS  Article  Google Scholar 

  3. Dehghani, M., Nasseri, S., Amin, S., & Zamanian, Z. (2010). Assessment of atrazine distribution in shiraz soils, south of Iran. Pakistan Journal of Biological Sciences, 13(2), 66–72.

    CAS  Article  Google Scholar 

  4. Hernández, A. F., Parrón, T., Tsatsakis, A. M., Requena, M., Alarcón, R., & López-Guarnido, O. (2013). Toxic effects of pesticide mixtures at a molecular level: Their relevance to human health. Toxicology, 307, 136–145.

    Article  Google Scholar 

  5. Kepner, J. (2004). Synergy: The big unknowns of pesticide exposure. Pesticides and You, 23, 17–20.

    Google Scholar 

  6. Laetz, C. A., Baldwin, D. H., Collier, T. K., Hebert, V., Stark, J. D., & Scholz, N. L. (2009). The synergistic toxicity of pesticide mixtures: Implications for risk assessment and the conservation of endangered Pacific Salmon. Environmental Health Perspectives, 117, 348–353.

    CAS  Article  Google Scholar 

  7. Moser, V. C., Simmons, J. E., & Gennings, C. (2006). Neurotoxicological interactions of a five-pesticide mixture in preweanling rats. Toxicological Sciences, 92, 235–245.

    CAS  Article  Google Scholar 

  8. Pape-Lindstrom, P. A., & Lydy, M. J. (1997). Synergistic toxicity of atrazine and organophosphate insecticides contravenes the response addition mixture model. Environmental Toxicology and Chemistry, 16, 2415–2420.

    CAS  Article  Google Scholar 

  9. Rider, C. V., & LeBlanc, G. A. (2005). An integrated addition and interaction model for assessing toxicity of chemical mixtures. Toxicology Sciences, 87, 520–528.

    CAS  Article  Google Scholar 

  10. Sabour Moghaddam, N., Khakvar, R., Mohammad Nejad, N., & Ali Asgharzad, N. (2016). The inhibitory effect of two common agricultural pesticides (benomyl and diazinon) on population growth of Pseudomonas putida. Journal of Alzahra University (Applied Biology), 29(2), 131–144.

    Google Scholar 

  11. Staley, Z. R., Harwood, V. J., & Rohr, J. R. (2015). A synthesis of the effects of pesticides on microbial persistence in aquatic ecosystems. Critical Reviews in Toxicology, 45(10), 813–836.

    CAS  Article  Google Scholar 

  12. Strachan, G., Preston, S., Maciel, H., Porter, A. J., & Paton, G. I. (2001). Use of bacterial biosensors to interpret the toxicity and mixture toxicity of herbicides in freshwater. Water Research, 35(14), 3490–3495.

    CAS  Article  Google Scholar 

  13. Sumampouw, O. J., & Risjani, Y. (2014). Bacteria as indicators of environmental pollution: Review. International Journal of Ecosystem, 4(6), 251–258.

    Google Scholar 

  14. Trimble, A. J., & Lydy, M. J. (2006). Effects of triazine herbicides on organophosphate insecticide toxicity in Hyalella azteca. Archives of Environmental Contamination and Toxicology, 51, 29–34.

    CAS  Article  Google Scholar 

  15. Wah Chu, K., & Chow, K. L. (2002). Synergistic toxicity of multiple heavy metals is revealed by a biological assay using a nematode and its transgenic derivative. Aquatic Toxicology, 61(1–2), 53–64.

    CAS  Article  Google Scholar 

  16. Wielgomas, B., & Krechniak, J. (2007). Toxicokinetic interactions of α-cypermethrin and chlorpyrifos in rats. Polish Journal of Environmental Studies, 16, 267–274.

    CAS  Google Scholar 

  17. Zare, M. R., Amin, M. M., Hemmati-Borji, S., Nikaeen, M., Bina, B., Mirhosseini, S. H., & Asadi, A. (2015a). Modified dehydrogenase enzyme assay for evaluation of the influence of Hg, Cd, and Zn on the bacterial community structure of a wastewater treatment plant. Toxicological and Environmental Chemistry, 97(5), 552–562.

    CAS  Article  Google Scholar 

  18. Zare, M. R., Amin, M. M., Nikaeen, M., Bina, B., Rahmani, A., Hemmati-Borji, S., & Rahmani, H. (2015b). Acute toxicity of Hg, Cd, and Pb towards dominant bacterial strains of sequencing batch reactor (SBR). Environmental Monitoring and Assessment, 187(5), 263. https://doi.org/10.1007/s10661-015-4457-y.

    CAS  Article  Google Scholar 

  19. Zare, M. R., Amin, M. M., Nikaeen, M., Zare, M., Bina, B., Fatehizadeh, A., Rahmani, A., & Ghasemian, M. (2016). Simplification and sensitivity study of alamar blue bioassay for toxicity assessment in liquid media. Desalination and Water Treatment, 57(23), 10934–10940.

    CAS  Article  Google Scholar 

  20. Zeliger, H. I. (2011). Human toxicology of chemical mixtures. In: Toxic consequences beyond the impact of one-component product and environmental exposures (2nd ed.). Oxford: Elsevier.

    Google Scholar 

Download references

Acknowledgements

This paper was extracted from Atefeh Fakhraei Fard’s M.Sc. thesis supported by the Research Vice-chancellor of Shiraz University of Medical Sciences (proposal No. 11165). This research was financially supported by Shiraz University of Medical Sciences (proposal No. 95-01-04-11951).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mansooreh Dehghani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zare, M.R., Dehghani, M. & Fakhraei Fard, A. Investigating the relationship between synergistic effects and diversity of four widely used agricultural pesticides by using bacterial species in liquid culture medium. Environ Monit Assess 192, 176 (2020). https://doi.org/10.1007/s10661-020-8125-5

Download citation

Keywords

  • Synergistic
  • Antagonistic
  • Toxicity
  • Agricultural pesticides
  • Alamar blue