The risk assessment of inorganic and organic pollutant levels in an urban area affected by intensive industry

Abstract

The city of Litvínov (North Bohemia, Czech Republic) is seriously affected by coal mining, coal processing, and intensive industrial activities. Within the urban area, the potential environmental hazard of risk elements (in soil and vegetation) and polycyclic aromatic hydrocarbons (PAHs, in soils) was estimated using selected environmental and human health hazard indices. In total, 24 sites were sampled, including the city center, residential areas, industrialized zone, and areas close to operating and/or abandoned coal mines. The results showed elevated values of As, Cd, Cu, Ni, Pb, and Zn in soils (the maximum levels of individual pollution indices varied between 3 and 5 for As, Pb, and Zn); the risk assessment code (RAC) values indicated high bioaccessibility of Cd and Zn. The high mobility of Cd was confirmed by their bioaccumulation factors (BAF) in the aboveground biomass of Taraxacum sect. Ruderalia and Polygonum aviculare, reaching up to 1.9 and 2.9, respectively. The Cd content in plants presents a substantial health hazard for herbivores such as Oryctolagus cuniculus living within the urban area. The PAH levels in the soils also showed elevated values; the contents of benzo(a)pyrene exceeded more than 2-fold the indicative values for potential health risk for biota, especially near the abandoned coal mines. The incremental lifetime cancer risks (ILCR) for ingestion of the contaminated soil showed only low or negligible cancerogenic risk, varying between 6.7 × 10−7 and 1.6 × 10−5 for children, and between 9.9 × 10−7 and 2.7 × 10−6 for adults. However, the potential health impact of the inhalation of the contaminated particulate matter should be included in the further research. Although the contamination level in the investigated area does not represent an imminent environmental and health risk, the potential remediation measures should be considered in the future.

This is a preview of subscription content, access via your institution.

References

  1. Alloway, B. J. (1990). Heavy metals in soils. Glasgow and London: Blackie and Son Ltd..

    Google Scholar 

  2. Alloway, B. J. (2013). Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Netherlands: Springer.

    Google Scholar 

  3. Angelova, V. R., Ivanova, R. V., Todorov, J. M., & Ivanov, K. I. (2010). Lead, cadmium, zinc, and copper bioavailability in the soil-plant-animal system in a polluted area. The Scientific World Journal, 10, 273–285.

    CAS  Google Scholar 

  4. Bhuiyan, M. A., Parvez, L., Islam, M. A., Dampare, S. B., & Suzuki, S. (2010). Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Journal of Hazardous Materials, 173(1–3), 384–392.

    CAS  Google Scholar 

  5. Bodzek, D., Luks-Betlej, K., & Janoszka, B. (1998). Occurrence of PAHs in various elements of environment in Zabrze (Upper Silesia, Poland). Water, Air, & Soil Pollution, 103, 91–100.

    CAS  Google Scholar 

  6. Boente, C., Matanzas, N., García-González, N., Rodríguez-Valdés, E., & Gallego, J. R. (2017). Trace elements of concern affecting urban agriculture in industrialized areas: a multivariate approach. Chemosphere, 183, 546–556.

    CAS  Google Scholar 

  7. Chary, N. S., Kamala, C. T. D., & Raj, S. (2008). Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicology and Environmental Safety, 69(3), 513–524.

    CAS  Google Scholar 

  8. Chen, Y., Zhao, H. X., Xie, Z. H., Huang, H. Y., Zang, S. Y., & Lian, B. (2015). Heavy metal pollution characteristics in the Kaili coal mining region, Guizhou province, China. Journal of Residuals Science and Technology, 12, S123–S131.

    CAS  Google Scholar 

  9. Directive No. 2002/32/ES (2002). of European Parliament and Council of Europe concerning xenobiotics in feedstuffs.

  10. Farmer, A. M., & Farmer, A. A. (2000). Concentrations of cadmium, lead, and zinc in livestock feed and organs around a metal production centre in eastern Kazakhstan. The Science of the Total Environment, 257(1), 53–60.

    CAS  Google Scholar 

  11. Feng, L., Zhang, L., & Feng, L. (2014). Dissipation of polycyclic aromatic hydrocarbons in soil amended with sewage sludge compost. International Biodeterioration & Biodegradation, 95, 200–207.

    CAS  Google Scholar 

  12. Finkelman, R. B., Orema, W., Castranova, V., Tatu, C. A., Belkin, H. E., Zheng, B., Lerch, H. E., Maharaj, S. V., & Bates, A. L. (2002). Health impacts of coal and coal use: possible solutions. International Journal of Coal Geology, 50(1-4), 425–443.

    CAS  Google Scholar 

  13. Fröhlichová, A., Száková, J., Najmanová, J., & Tlustoš, P. (2018). An assessment of the risk of element contamination of urban and industrial areas using Taraxacum sect. Ruderalia as a bioindicator. Environmental Monitoring and Assessment, 190, 150.

    Google Scholar 

  14. Gao, B., Feng, Q., Zhou, L., Wu, H., & Alam, E. (2019). Distributions of polycyclic aromatic hydrocarbons in coal in China. Polish Journal of Environmental Studies, 28(3), 1665–1674.

    Google Scholar 

  15. Gonzalez-Fernandez, O., Batista, M. J., Abreu, M. M., Queralt, I., & Carvalho, M. L. (2011). Elemental characterization of edible plants and soils in an abandoned mining region: assessment of environmental risk. X-Ray Spectrometry, 40, 353–363.

    CAS  Google Scholar 

  16. He, M., Yang, S., Zhao, J., Collins, C., Xu, J., & Liu, X. (2019). Reduction in the exposure risk of farmer from e-waste recycling site following environmental policy adjustment: a regional scale view of PAHs in paddy fields. Environment International, 133(A), 105136.

    CAS  Google Scholar 

  17. Hindersmann, B., & Achten, C. (2018). Urban soils impacted by tailings from coal mining: PAH source identification by 59 PAHs, BPCA and alkylated PAHs. Environmental Pollution, 242(B), 1217–1225.

    CAS  Google Scholar 

  18. Holoubek, I., Dušek, L., Machala, M., Čupr, P., & Bláha, K. (2001). Project IDRIS - ecological risk assessment - regional approaches. In Assessment and management of environmental risks: methods and applications in Eastern European and developing countries (pp. 283–298). Boston: Kluwer Academic Publishers.

  19. Igwe, J. C., & Ukaogo, P. O. (2015). Environmental effects of polycyclic aromatic hydrocarbons. Journal of Natural Science and Research, 5(7), 117–131.

    Google Scholar 

  20. ISO 11260. (1994). Standard of soil quality - determination of effective cation exchange capacity and base saturation level using barium chloride solution. Geneve: International Organization for Standardization.

    Google Scholar 

  21. Jeelani, N., Zhu, Z., Wang, P., Zhang, P., Song, S., Yuan, H., An, S., & Leng, X. (2017). Assessment of trace metal contamination and accumulation in sediment and plants of the Suoxu river, China. Aquatic Botany, 140, 92–95.

    CAS  Google Scholar 

  22. Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (3rd ed.). USA: CRC Press.

    Google Scholar 

  23. Kamler, J. (2009). Supplemental feed of roe deer. How to get suitable feedstuff and how to serve it properly (in Czech). Myslivost, 57, 30.

    Google Scholar 

  24. Katsoyiannis, A., & Breivik, K. (2014). Model-based evaluation of the use of polycyclic aromatic hydrocarbons molecular diagnostic ratios as a source identification tool. Environmental Pollution, 184, 488–494.

    CAS  Google Scholar 

  25. Ke, C. L., Gu, Y. G., & Liu, Q. (2017). Polycyclic aromatic hydrocarbons (PAHs) in exposed lawn soils from 28 urban parks in the megacity Guangzhou: occurrence, sources, and human health implications. Archives of Environmental Contamination and Toxicology, 72, 496–504.

    CAS  Google Scholar 

  26. Khadilkar, V. V., Khadilkar, A. V., Choudhury, P., Agarwal, K. N., Ugra, D., & Shah, N. K. (2007). IAP growth monitoring guidelines for children from birth to 18 years. Indian Pediatrics, 44, 187–197.

    CAS  Google Scholar 

  27. Khaustov, A. P., & Redina, M. M. (2017). Geochemical markers based on concentration ratios of PAH in oils and oil-polluted areas. Geochemistry International, 55(1), 98–107.

    CAS  Google Scholar 

  28. Knafla, A., Phillipps, K. A., Brecher, R. W., Petrovic, S., & Richardson, M. (2006). Development of a dermal cancer slope factor for benzo(a)pyrene. Regulatory Toxicology and Pharmacology, 45(2), 159–168.

    CAS  Google Scholar 

  29. Košnář, Z., Mercl, F., Perná, I., & Tlustoš, P. (2016). Investigation of polycyclic aromatic hydrocarbon content in fly ash and bottom ash of biomass incineration plants in relation to the operating temperature and unburned carbon content. The Science of the Total Environment, 563-564, 53–61.

    Google Scholar 

  30. Kotalová, D., Száková, J., Sysalová, J., & Tlustoš, P. (2011). The contents of selected pollutants in soil and vegetation cover in urban district of Ostrava city affected by the industrial emissions (in Czech). Ochrana ovzduší, 23(3), 24–31.

    Google Scholar 

  31. Küpper, H., Zhao, F. J., & McGrath, S. P. (1999). Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiology, 119, 305–311.

    Google Scholar 

  32. Lawal, A. T. (2017). Polycyclic aromatic hydrocarbons. A review. Cogent Environmental Science, 3, 1339841.

  33. Li, L., Wu, J., Lu, J., Min, X., Xu, J., & Yang, L. (2018). Distribution, pollution, bioaccumulation, and ecological risks of trace elements in soils of the northeastern Qinghai-Tibet Plateau. Ecotoxicology, 166, 345–353.

    CAS  Google Scholar 

  34. Lin, W., Wu, K., Lao, Z., Hu, W., Lin, B., Li, Y., Fan, H., & Hu, J. (2019). Assessment of trace metal contamination and ecological risk in the forest ecosystem of dexing mining area in northeast Jiangxi Province, China. Ecotoxicology and Environmental Safety, 167, 76–82.

    CAS  Google Scholar 

  35. Liu, X., Bai, Z., Yu, Q., Cao, Y., & Zhou, W. (2017). Polycyclic aromatic hydrocarbons in the soil profiles (0–100 cm) from the industrial district of a large open-pit coal mine, China. RSC Advances, 7, 28029–28037.

    CAS  Google Scholar 

  36. Ma, X., Lu, Z., & Cheng, J. (2008). Ecological risk assessment of open coal mine area. Environmental Monitoring and Assessment, 147(1-3), 471–481.

    CAS  Google Scholar 

  37. Marquès, M., Sierra, J., Drotikova, T., Maria, M., Nadal, M., & Domingo, J. L. (2017). Concentrations of polycyclic aromatic hydrocarbons and trace elements in Arctic soils: a case-study in Svalbard. Environmental Research, 159, 202–211.

    Google Scholar 

  38. Marrugo-Negrete, J., Pinedo-Hernández, J., & Díez, S. (2017). Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environmental Research, 154, 380–388.

    CAS  Google Scholar 

  39. Masto, R. E., Singh, M. K., Rout, T. K., Kumar, A., Kumar, S., George, J., Selvi, V. A., Dutta, P., Tripathi, R. C., & Srivastava, N. K. (2019). Health risks from PAHs and potentially toxic elements in street dust of a coal mining area in India. Environmental Geochemistry and Health, 41, 1923–1937.

    CAS  Google Scholar 

  40. Miranda, M., Lopéz-Alonso, M., Castillo, C., Hermández, J., & Benedito, J. L. (2005). Effects of moderate pollution on toxic and trace metal levels in calves from a polluted are of northern Spain. Environment International, 31(4), 543–548.

    CAS  Google Scholar 

  41. Mohelský, M. (2014). Nutrition and feeding of hares (in Czech). Myslivost, 62, 38.

    Google Scholar 

  42. Mohelský, M. (2016). Nutrition of moufflons (in Czech). Myslivost, 64, 20.

    Google Scholar 

  43. Nemerow, N. L. (1985). Stream, lake, estuary, and ocean pollution (2nd ed.). PA: New York: Van Nostrand Reinhold.

    Google Scholar 

  44. Ouyang, Z., Gao, L., & Yang, C. (2018). Distribution, sources and influence factors of polycyclic aromatic hydrocarbon at different depths of the soil and sediments of two typical coal mining subsidence areas in Huainan, China. Ecotoxicology and Environmental Safety, 163, 255–265.

    CAS  Google Scholar 

  45. Pavlović, D., Pavlović, M., Čakmak, D., Kostić, O., Jarić, S., Sakan, S., Dordević, D., Mitrović, M., Gretić, I., & Pavlović, P. (2018). Fractionation, mobility, and contamination assessment of potentially toxic metals in urban soils in four industrial Serbian cities. Archives of Environmental Contamination and Toxicology, 75, 335–350.

    Google Scholar 

  46. Public notice No.153/2016 (2016). about the conditions for the protection of the agricultural soil quality. Legal code of The Czech Republic, pp. 2692−2699

  47. Quevauviller, P., Ure, A., Muntau, H., & Griepink, B. (1993). Improvement of analytical measurements within the BCR-program – single and sequential extraction procedures applied to soil and sediment analysis. International Journal of Environmental Analytical Chemistry, 51(1-4), 129–134.

    CAS  Google Scholar 

  48. Ribeiro, J., Silva, T., Filho, J. G. M., & Flores, D. (2012). Polycyclic aromatic hydrocarbons (PAHs) in burning and non-burning coal waste piles. Journal of Hazardous Materials, 199-200, 105–110.

    CAS  Google Scholar 

  49. Rodriguez-Iruretagoiena, A., de Vallejuelo, S. F. O., Gredilla, A., Ramos, C. G., Oliveira, M. L. S., Arana, G., de Diego, A., Madariaga, J. M., & Silva, L. F. O. (2015). Fate of hazardous elements in agricultural soils surrounding a coal power plant complex from Santa Catarina (Brazil). The Science of the Total Environment, 508, 374–382.

    CAS  Google Scholar 

  50. Seshadri, B., Bolan, N. S., Naidu, R., & Brodie, K. (2010). The role of coal combustion products in managing the bioavailability of nutrients and heavy metals in soils. Journal of Soil Science and Plant Nutrition, 10(3), 378–398.

    Google Scholar 

  51. Shi, G. L., Lou, L. Q., Zhang, S., Xia, X. W., & Cai, Q. S. (2013). Arsenic, copper, and zinc contamination in soil and wheat during coal mining, with assessment of health risks for the inhabitants of Huaibei, China. Environmental Science and Pollution Research International, 20(12), 8435–8445.

    CAS  Google Scholar 

  52. Štýs, S. (2010). Restoration of the Litvínov region (in Czech). Mostecké Listy, 11, 4–5.

    Google Scholar 

  53. USEPA. (2009). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment) Final, EPA-540-R-070-002. Washington, DC: U.S. Environmental Protection Agency.

    Google Scholar 

  54. USEPA. (2011). Exposure factors handbook 2011 Edition (Final). Washington, DC: U.S. Environmental Protection Agency.

    Google Scholar 

  55. Vala, Z., & Zabloudil, F. (2008). Lepus europaeus and Oryctolagus cuniculus - their necessities of life at the present time (in Czech). Myslivost, 56, 49.

    Google Scholar 

  56. Vega, F. A., Covelo, E. F., & Andrade, M. L. (2008). A versatile parameter for comparing the capacities of soils for sorption and retention of heavy metals dumped individually or together: results for cadmium, copper and lead in twenty soil horizons. Journal of Colloid and Interface Science, 327(2), 275–286.

    CAS  Google Scholar 

  57. Wahsha, M., Nadimi-Goki, M., & Bini, C. (2016). Land contamination by toxic elements in abandoned mine areas in Italy. Journal of Soils and Sediments, 16, 1300–1305.

    CAS  Google Scholar 

  58. Xu, X., Lu, X., Han, X., & Zhao, N. (2015). Ecological and health risk assessment of metal in resuspended particles of urban street dust from an industrial city in China. Current Science, 108(1), 72–79.

    CAS  Google Scholar 

  59. Yakovleva, E. V., Gabov, D. N., Beznosikov, V. A., & Kondratenok, B. M. (2016). Accumulation of polycyclic aromatic hydrocarbons in soils and plants of the tundra zone under the impact of coal-mining industry. Eurasian Soil Science, 49, 1319–1328.

    CAS  Google Scholar 

  60. Yakovleva, E. V., Gabov, D. N., Beznosikov, V. A., Kondratenok, B. M., & Dubrovskiy, Y. A. (2017). Accumulation of PAHs in tundra plants and soils under the influence of coal mining. Polycyclic Aromatic Compounds, 37(2-3), 203–218.

    CAS  Google Scholar 

  61. Yakovleva, E. V., Gabov, D. N., Kondratenok, B. M., & Dubrovskiy, Y. A. (2020). Two-year monitoring of PAH in the soils and Pleurozium schreberi under the impact of coal mining. Polycyclic Aromatic Compounds, 1–16. https://doi.org/10.1080/10406638.2019.1709213.

  62. Yang, Y., Ligouis, B., Pies, C., Grathwohl, P., & Hofmann, T. (2008). Occurrence of coal and coal-derived particle-bound polycyclic aromatic hydrocarbons (PAHs) in a river floodplain soil. Environmental Pollution, 151(1), 121–129.

    CAS  Google Scholar 

  63. Yao, C. X., Chen, Z. L., Zhang, J., & Hou, J. (2005). Heavy metal pollution assessment of vegetables in Pudong zone of Shanghai (in Chinese). Journal of Agro-environmental Science, 24(4), 761–765.

    CAS  Google Scholar 

  64. Yudovich, Y. E., & Ketris, M. P. (2005). Arsenic in coal: a review. International Journal of Coal Geology, 61(3-4), 141–196.

    CAS  Google Scholar 

  65. Zádrapová, D., Titěra, A., Száková, J., Čadková, Z., Cudlín, O., Najmanová, J., & Tlustoš, P. (2019). Mobility and bioaccessibility of risk elements in the area affected by the long-term opencast coal mining. Journal of Environmental Science and Health, Part A, 54(12), 1159–1169.

    Google Scholar 

  66. Zeng, S., Ma, J., Ren, Y., Liu, G. J., Zhang, Q., & Chen, F. (2019). Assessing the spatial distribution of soil PAHs and their relationship with anthropogenic activities at a national scale. International Journal of Environmental Research and Public Health, 16(24), 4928.

    CAS  Google Scholar 

  67. Zhang, J., Liu, F., Huang, H., Wang, R., & Xu, B. (2020). Occurrence, risk and influencing factors of polycyclic aromatic hydrocarbons in surface soils from a large-scale coal mine, Huainan, China. Ecotoxicology and Environmental Safety, 192, 110269.

    CAS  Google Scholar 

Download references

Acknowledgments

Correction and improvement of language was provided by Proof-Reading-Service.com Ltd., Devonshire Business Centre, Works Road, Letchworth Garden City SG6 1GJ, UK.

Funding

This work was supported by the grant project of GAČR 17-00859S.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jiřina Száková.

Ethics declarations

Research did not involve any human participants and/or animals

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hanousková, B., Száková, J., Rychlíková, E. et al. The risk assessment of inorganic and organic pollutant levels in an urban area affected by intensive industry. Environ Monit Assess 193, 68 (2021). https://doi.org/10.1007/s10661-020-08825-x

Download citation

Keywords

  • Risk elements
  • Polycyclic aromatic hydrocarbons
  • Soil
  • Plants
  • Urban area
  • Risk assessment