Rapid monitoring of reclaimed farmland effects in coal mining subsidence area using a multi-spectral UAV platform

Abstract

In eastern China, coal mining has damaged a large amount of farmland, posing a great threat to food security. Backfilling with coal waste, fly ash, and sediments from rivers is an effective method to restore farmland. This study was conducted at the reclaimed area (RA) and the undisturbed area (UA) in Shandong Province, China. Soil and plant analyzer development (SPAD) of corn was selected as an indicator of crop growth. Multi-spectral data was obtained by the unmanned aerial vehicle equipped with a camera. By analyzing the correlation between SPAD and spectral bands, the common vegetation index is improved. Different regression methods were used to construct the SPAD inversion model. The distribution of corn SPAD was monitored to objectively evaluate reclamation technology. The results are as follows: (1) the vegetation index improved using the red-edge band has a higher correlation with SPAD, and the largest coefficient of determination (R2) value is 0.779; (2) the optimum inversion model for both jointing stage (R2 = 0.676) and milky stage (R2 = 0.661) is the linear regression model; the optimum model for both tasseling stage (R2 = 0.809) and filling stage (R2 = 0.830) is the partial least squares regression model; (3) the SPAD inversion map of RA and UA obtained by the optimum model shows that the corn grown in RA is slightly better than in UA. This study realized the rapid and efficient monitoring of the reclamation effects based on multi-spectral imagery and verified the feasibility of backfilling reclamation with Yellow River sediment in coal mining subsidence areas.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Akaike, H. (1998). Information theory and an extension of the maximum likelihood principle. In Selected papers of hirotugu akaike (pp. 199–213): Springer.

  2. Anita, S. M., Matthew, R., Patrick, R., Tharindu, A., & Marambe, A. (2018). The importance of leaf area index in mapping chlorophyll content of corn under different agricultural treatments using UAV images. International Journal of Remote Sensing, 39(15–16), 5415–5431.

    Google Scholar 

  3. Atzberger, C., Darvishzadeh, R., Immitzer, M., Schlerf, M., Skidmore, A., & Le Maire, G. (2015). Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy. International Journal of Applied Earth Observation and Geoinformation, 43, 19–31.

    Google Scholar 

  4. Bian, Z., Dong, J., Lei, S., Leng, H., Mu, S., & Wang, H. (2009). The impact of disposal and treatment of coal mining wastes on environment and farmland. Environmental Geology, 58, 625–634. https://doi.org/10.1007/s00254-008-1537-0.

    CAS  Article  Google Scholar 

  5. Bielinis, E., Jozwiak, W., & Robakowski, P. (2015). Modelling of the relationship between the SPAD values and photosynthetic pigments content in Quercus petraea and Prunus serotina leaves. Dendrobiology, 73, 125134.

    CAS  Google Scholar 

  6. Broge, N. H., & Leblanc, E. (2001). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76(2), 156–172.

    Google Scholar 

  7. Chang, X., Chang, Q., Wang, X., Chu, D., & Guo, R. (2019). Estimation of chlorophyll content in corn based on hyperspectral imagery of UAV. Agricultural Research in the Arid Areas, 37(1), 72–79 (in Chinese).

    Google Scholar 

  8. Chugh, Y. P. (2018). Concurrent mining and reclamation for underground coal mining subsidence impacts in China. International Journal of Coal Science & Technology, 5, 18–35. https://doi.org/10.1007/s40789-018-0189-2.

    Article  Google Scholar 

  9. Daniels, W. L., Whittecar, G. R., & Carter III, C. H. (2007). Conversion of Potomac River dredge sediments to productive agricultural soils. Proceedings America Society of Mining and Reclamation, 183–199.

  10. Darmody, R. G., Bauer, R., Barkley, D., Clarke, S., & Hamilton, D. (2014). Agricultural impacts of longwall mine subsidence: the experience in Illinois, USA and Queensland, Australia. International Journal of Coal Science & Technology, 1, 207–212. https://doi.org/10.1007/s40789-014-0026-1.

    Article  Google Scholar 

  11. Deng, L., Mao, Z., Li, X., Hu, Z., Duan, F., & Yan, Y. (2018). UAV-based multispectral remote sensing for precision agriculture: a comparison between different cameras. ISPRS Journal of Photogrammetry and Remote Sensing, 146, 124–136. https://doi.org/10.1016/j.isprsjprs.2018.09.008.

    Article  Google Scholar 

  12. Dou, Z., Cui, L., Li, J., Zhu, Y., Gao, C., Pan, X., Lei, Y., Zhang, M., Zhao, X., & Li, W. (2018). Hyperspectral estimation of the chlorophyll content in short-term and long-term restorations of mangrove in Quanzhou Bay Estuary, China. Sustainability, 10(4), 1127.

    Google Scholar 

  13. Du, S., Liu, X., Zhang, D., Zhang, X., Huang, L., Zhao, X., et al. (2018). 2018 7th International Conference on Agro-geoinformatics (Agro-geoinformatics). IEEE.

  14. Edalat, M., Naderi, R., & Egan, T. P. (2019). Corn nitrogen management using NDVI and SPAD sensor-based data under conventional vs. reduced tillage systems. Journal of Plant Nutrition, 42, 2310–2322. https://doi.org/10.1080/01904167.2019.1648686.

    CAS  Article  Google Scholar 

  15. Elarab, M., Ticlavilca, A. M., Torres-Rua, A. F., Maslova, I., & McKee, M. (2015). Estimating chlorophyll with thermal and broadband multispectral high resolution imagery from an unmanned aerial system using relevance vector machines for precision agriculture. International Journal of Applied Earth Observation and Geoinformation, 43, 32–42.

    Google Scholar 

  16. Girmay, G., Nyssen, J., Poesen, J., Bauer, H., Merckx, R., Haile, M., & Deckers, J. (2012). Land reclamation using reservoir sediments in Tigray, northern Ethiopia. Soil Use and Management, 28(1), 113–119.

    Google Scholar 

  17. Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58(3), 289–298.

    Google Scholar 

  18. Gitelson, A. A., Gritz, Y., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160(3), 271–282.

    CAS  Google Scholar 

  19. Gläßer, C., Thürkow, D., Dette, C., & Scheuer, S. (2010). The development of an integrated technical–methodical approach to visualise hydrological processes in an exemplary post-mining area in Central Germany. ISPRS Journal of Photogrammetry and Remote Sensing, 65, 275–281. https://doi.org/10.1016/j.isprsjprs.2009.11.002.

    Article  Google Scholar 

  20. Goel, N. S., & Qin, W. (1994). Influences of canopy architecture on relationships between various vegetation indices and LAI and FPAR: a computer simulation. Remote Sensing Reviews, 10(4), 309–347.

    Google Scholar 

  21. Gong, P., Pu, R., Biging, G. S., & Larrieu, M. R. (2003). Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 41(6), 1355–1362.

    Google Scholar 

  22. González-Jaramillo, V., Fries, A., & Bendix, J. (2019). AGB estimation in a tropical mountain forest (TMF) by means of RGB and multispectral images using an unmanned aerial vehicle (UAV). Remote Sensing, 11(12), 1413.

    Google Scholar 

  23. Guan, S., Fukami, K., Matsunaka, H., Okami, M., Tanaka, R., Nakano, H., Sakai, T., Nakano, K., Ohdan, H., & Takahashi, K. (2019). Assessing correlation of high-resolution NDVI with fertilizer application level and yield of rice and wheat crops using small UAVs. Remote Sensing, 11(2), 112.

    Google Scholar 

  24. Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81(2–3), 416–426.

    Google Scholar 

  25. He, C., Zheng, S., Wan, N., Zhao, T., Yuan, J., He, W., & Hu, J. J. (2016). Potato spectrum and the digital image feature parameters on the response of the nitrogen level and its application. Spectroscopy and Spectral Analysis, 36(9), 2930–2936.

    CAS  Google Scholar 

  26. He, T., Xiao, W., Zhao, Y., Deng, X., & Hu, Z. (2020). Identification of waterlogging in eastern China induced by mining subsidence: a case study of Google Earth Engine time-series analysis applied to the Huainan coal field. Remote Sensing of Environment, 242, 111742. https://doi.org/10.1016/j.rse.2020.111742.

    Article  Google Scholar 

  27. Horler, D. N. H., Barber, J., & Barringer, A. R. (1980). Effects of heavy metals on the absorbance and reflectance spectra of plants. International Journal of Remote Sensing, 1(2), 121–136.

    Google Scholar 

  28. Horler, D. N. H., DOCKRAY, M., & Barber, J. (1983). The red edge of plant leaf reflectance. International Journal of Remote Sensing, 4(2), 273–288.

    Google Scholar 

  29. Hu, Z., Wang, P., & Li, J. (2012). Ecological restoration of abandoned mine land in China. Journal of Resources & Ecology, 3(4), 289–296.

    Google Scholar 

  30. Hu, Z., Yang, G., Xiao, W., Li, J., Yang, Y., & Yu, Y. (2014). Farmland damage and its impact on the overlapped areas of cropland and coal resources in the eastern plains of China. Resources, Conservation and Recycling, 86, 1–8. https://doi.org/10.1016/j.resconrec.2014.01.002.

    Article  Google Scholar 

  31. Hu, Z., Shao, F., Duo, L., Wu, S., Li, X., & McSweeney, K. (2017). Technique of reclaiming subsided land with Yellow River sediments in the form of spaced strips. Meitan Xuebao/Journal of the China Coal Society, 42(3), 557–566 (in Chinese).

    Google Scholar 

  32. Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–309.

    Google Scholar 

  33. Hunt Jr., E. R., Doraiswamy, P. C., McMurtrey, J. E., Daughtry, C. S. T., Perry, E. M., & Akhmedov, B. (2013). A visible band index for remote sensing leaf chlorophyll content at the canopy scale. International Journal of Applied Earth Observation and Geoinformation, 21, 103–112.

    Google Scholar 

  34. Jaakkola, A., Hyyppä, J., Kukko, A., Yu, X., Kaartinen, H., Lehtomäki, M., & Lin, Y. (2010). A low-cost multi-sensoral mobile mapping system and its feasibility for tree measurements. ISPRS Journal of Photogrammetry and Remote Sensing, 65(6), 514–522.

    Google Scholar 

  35. Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P. J., Asner, G. P., François, C., & Ustin, S. L. (2009). PROSPECT+ SAIL models: a review of use for vegetation characterization. Remote Sensing of Environment, 113, S56–S66.

    Google Scholar 

  36. Jiang, H., Yang, H., Chen, X., Wang, S., Li, X., Liu, K., et al. (2015a). Study on the accuracy and stability of chlorophyll content in vegetation using spectral index (Vol. 35). Spectroscopy and Spectral Analysis, 35(4), 975–981 (in Chinese).

    CAS  Google Scholar 

  37. Jiang, H. L., Yang, H., Chen, X. P., Wang, S. D., Li, X. K., Liu, K., & Cen, Y. (2015b). Research on accuracy and stability of inversing vegetation chlorophyll content by spectral index method. Spectroscopy and Spectral Analysis, 35(4), 975–981.

    CAS  Google Scholar 

  38. Jin, W., & Li, J. (2009). Study on relationships between total chlorophyll with hyperspectral features for leaves of Pinus massoniana forest. Spectroscopy and Spectral Analysis, 29(11), 3033–3037.

    Google Scholar 

  39. Jin, X., Xu, X., Song, X., Li, Z., Wang, J., & Guo, W. (2013). Estimation of leaf water content in winter wheat using grey relational analysis–partial least squares modeling with hyperspectral data. Agronomy Journal, 105(5), 1385–1392.

    Google Scholar 

  40. Jordan, C. F. (1969). Derivation of leaf-area index from quality of light on the forest floor. Ecology, 50(4), 663–666.

    Google Scholar 

  41. Kelcey, J., & Lucieer, A. (2012). Sensor correction of a 6-band multispectral imaging sensor for UAV remote sensing. Remote Sensing, 4(5), 1462–1493.

    Google Scholar 

  42. Khan, A., Schaefer, D., Tao, L., Miller, D. J., Sun, K., Zondlo, M. A., Harrison, W. A., Roscoe, B., & Lary, D. J. (2012). Low power greenhouse gas sensors for unmanned aerial vehicles. Remote Sensing, 4(5), 1355–1368.

    Google Scholar 

  43. Koropchak, S. C., Daniels, W. L., Wick, A., Whittecar, G. R., & Haus, N. (2016). Beneficial use of dredge materials for soil reconstruction and development of dredge screening protocols. Journal of Environmental Quality, 45(1), 62–73.

    CAS  Google Scholar 

  44. Kuo, Y., Yang, T., & Huang, G.-W. (2008). The use of grey relational analysis in solving multiple attribute decision-making problems. Computers & Industrial Engineering, 55(1), 80–93.

    Google Scholar 

  45. Liu, F., Zhang, C., & He, Y. (2015a). Prediction of SPAD value in oilseed rape leaves using hyperspectral imaging technique. Spectroscopy and Spectral Analysis, 35(2), 486–491.

    Google Scholar 

  46. Liu, F., Zhang, C., & He, Y. (2015b). Prediction of SPAD value in oilseed rape leaves using hyperspectral imaging technique. Spectroscopy and Spectral Analysis, 35(2), 486–491.

    Google Scholar 

  47. Liu, K., Li, Y., Yu, P., Wu, Y., Zhou, L., Hu, H., et al. (2016). Estimating grain yield based on bsw and spad at grain filling stage in double rice cropping system of China. International Journal of Agriculture and Biology, 18(5), 889–894.

    Google Scholar 

  48. Luo, Z., Luan, K., Zhu, W., Xia, W., Jiang, X., & Zhu, M. (2018). 2018 7th International Conference on Agro-geoinformatics (Agro-geoinformatics). IEEE.

  49. Lv, X., Xiao, W., Zhao, Y., Zhang, W., Li, S., & Sun, H. (2019). Drivers of spatio-temporal ecological vulnerability in an arid, coal mining region in Western China. Ecological Indicators, 106, 105475. https://doi.org/10.1016/j.ecolind.2019.105475.

    Article  Google Scholar 

  50. Mao, Z., Deng, L., Sun, J., Zhang, A.-w., Chen, X.-y., & Zhao, Y. (2018). Research on the application of UAV multispectral remote sensing in the maize chlorophyll prediction. Spectroscopy and Spectral Analysis, 38(9), 2923–2931.

    CAS  Google Scholar 

  51. Marschalko, M., Bednárik, M., Yilmaz, I., Bouchal, T., & Kubečka, K. (2012). Evaluation of subsidence due to underground coal mining: an example from the Czech Republic. Bulletin of Engineering Geology and the Environment, 71, 105–111. https://doi.org/10.1007/s10064-011-0401-8.

    Article  Google Scholar 

  52. Maza, I., Caballero, F., Capitán, J., Martínez-de-Dios, J. R., & Ollero, A. (2011). Experimental results in multi-UAV coordination for disaster management and civil security applications. Journal of Intelligent and Robotic Systems, 61(1–4), 563–585.

    Google Scholar 

  53. Mihai, H., & Florin, S. (2016). AIP Conference Proceedings (Vol. 1). AIP Publishing.

  54. Morrison, K., Reynolds, J., & Wright, I. (2018). Underground coal mining and subsidence, channel fracturing and water pollution: a five-year investigation. Hobar: In Proceedings of the 9th Australian Stream Management Conference.

  55. Padilla, F. M., Peña-Fleitas, M. T., Gallardo, M., Giménez, C., & Thompson, R. B. (2017). Derivation of sufficiency values of a chlorophyll meter to estimate cucumber nitrogen status and yield. Computers and Electronics in Agriculture, 141, 54–64.

    Google Scholar 

  56. Pinar, A., & Curran, P. J. (1996). Technical note grass chlorophyll and the reflectance red edge. International Journal of Remote Sensing, 17(2), 351–357.

    Google Scholar 

  57. Qiong, W., Cheng, W., Jingjing, F., & Jianwei, J. (2016). Field monitoring of wheat seedling stage with hyperspectral imaging. International Journal of Agricultural and Biological Engineering, 9, 143–148. https://doi.org/10.25165/ijabe.v9i5.1707.

    Article  Google Scholar 

  58. Ren, H., Zhao, Y., Xiao, W., & Hu, Z. (2019). A review of UAV monitoring in mining areas: current status and future perspectives. International Journal of Coal Science & Technology, 6, 320–333. https://doi.org/10.1007/s40789-019-00264-5.

    Article  Google Scholar 

  59. Richardson, A. J., & Wiegand, C. L. (1977). Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 43(12), 1541–1552.

    Google Scholar 

  60. Roosjen, P. P. J., Brede, B., Suomalainen, J. M., Bartholomeus, H. M., Kooistra, L., & Clevers, J. G. (2018). Improved estimation of leaf area index and leaf chlorophyll content of a potato crop using multi-angle spectral data–potential of unmanned aerial vehicle imagery. International Journal of Applied Earth Observation and Geoinformation, 66, 14–26.

    Google Scholar 

  61. Roujean, J.-L., & Breon, F.-M. (1995). Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 51(3), 375–384.

    Google Scholar 

  62. Rouse Jr, J.W., Haas, R.H., Schell, J.A., & Deering, D.W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. 1, 309.

  63. Shi, L., Hu, S., & Zha, Y. (2018). IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE.

  64. Smith, K. L., Steven, M. D., & Colls, J. J. (2004). Use of hyperspectral derivative ratios in the red-edge region to identify plant stress responses to gas leaks. Remote Sensing of Environment, 92(2), 207–217.

    Google Scholar 

  65. Swain, K. C., Thomson, S. J., & Jayasuriya, H. P. W. (2010). Adoption of an unmanned helicopter for low-altitude remote sensing to estimate yield and total biomass of a rice crop. Transactions of the ASAE (American Society of Agricultural Engineers), 53(1), 21.

    Google Scholar 

  66. Tunca, E., Köksal, E. S., Çetin, S., Ekiz, N. M., & Balde, H. (2018). Yield and leaf area index estimations for sunflower plants using unmanned aerial vehicle images. Environmental Monitoring and Assessment, 190(11), 682.

    Google Scholar 

  67. Vega, F. A., Ramirez, F. C., Saiz, M. P., & Rosua, F. O. (2015). Multi-temporal imaging using an unmanned aerial vehicle for monitoring a sunflower crop. Biosystems Engineering, 132, 19–27.

    Google Scholar 

  68. Wakamori, K., Ichikawa, D., & Oguri, N. (2017). 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE.

  69. Wang, C., Feng, M., Yang, W., Ding, G., Xiao, L., Li, G., & Liu, T. (2017). Extraction of sensitive bands for monitoring the winter wheat (Triticum aestivum) growth status and yields based on the spectral reflectance. PLoS One, 12, e0167679. https://doi.org/10.1371/journal.pone.0167679.

    CAS  Article  Google Scholar 

  70. Xiang, H., & Tian, L. (2011). Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosystems Engineering, 108(2), 174–190.

    Google Scholar 

  71. Xiao, W., Hu, Z., Chugh, Y. P., & Zhao, Y. (2014). Dynamic subsidence simulation and topsoil removal strategy in high groundwater table and underground coal mining area: a case study in Shandong Province. International Journal of Mining, Reclamation and Environment, 28, 250–263. https://doi.org/10.1080/17480930.2013.828457.

    Article  Google Scholar 

  72. Xiao, W., Li, S., Wang, Z., Yang, Y., & Wang, T. (2016). Ecological risk identification and assessment for a coal mine with a high groundwater table. Acta Ecologica Sinica, 36(17), 5611–5619 (in Chinese).

    Google Scholar 

  73. Xiao, W., Fu, Y., Wang, T., & Lv, X. (2018). Effects of land use transitions due to underground coal mining on ecosystem services in high groundwater table areas: a case study in the Yanzhou coalfield. Land Use Policy, 71, 213–221. https://doi.org/10.1016/j.landusepol.2017.11.059.

    Article  Google Scholar 

  74. Xu, J., Wang, Y., Yang, S., Peng, S., & Kong, W. (2015). Improved performance of photosynthetic light response equations with unified parameters for rice leaves with different SPAD values. Pakistan Journal of Botany, 47(3), 877–882.

  75. Yai, F., Cai, H., Sun, J., & Qiao, W. (2015). Application of stationary wavelet transformation to winter wheat SPAD hyperspectral monitoring. The Journal of Applied Ecology, 26(7), 2139–2145.

    Google Scholar 

  76. Yang, X., Yu, Y., & Fan, W. (2015). Chlorophyll content retrieval from hyperspectral remote sensing imagery. Environmental Monitoring and Assessment, 187(7), 456.

    Google Scholar 

  77. Yeom, J., Jung, J., Chang, A., Maeda, M., & Landivar, J. (2017). 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) : IEEE.

  78. Yonah, I. B., Mourice, S. K., Tumbo, S. D., Mbilinyi, B., & Dempewolf, J. (2018). Unmanned aerial vehicle-based remote sensing in monitoring smallholder, heterogeneous crop fields in Tanzania. International Journal of Remote Sensing, 39, 5453–5471. https://doi.org/10.1080/01431161.2018.1455241.

    Article  Google Scholar 

  79. Yu, K., Zhao, Y., Zhu, F., Li, X., & He, Y. (2016). Mapping of chlorophyll and SPAD distribution in pepper leaves during leaf senescence using visible and near-infrared hyperspectral imaging. Transactions of the ASABE, 59(1), 13–24.

    CAS  Google Scholar 

  80. Yue, J., Yang, G., Li, C., Li, Z., Wang, Y., Feng, H., & Xu, B. (2017). Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models. Remote Sensing, 9(7), 708.

    Google Scholar 

  81. Zhang, S., Zhao, G., Lang, K., Su, B., Chen, X., Xi, X., & Zhang, H. (2019). Integrated satellite, unmanned aerial vehicle (UAV) and ground inversion of the SPAD of winter wheat in the reviving stage. Sensors, 19(7), 1485.

    CAS  Google Scholar 

  82. Zheng, H., Liu, Y., Qin, Y., Yang, C., & Fan, M. (2015). Establishing dynamic thresholds for potato nitrogen status diagnosis with the SPAD chlorophyll meter. Journal of Integrative Agriculture, 14(1), 190–195.

    CAS  Google Scholar 

  83. Zheng, H., Li, W., Jiang, J., Liu, Y., Cheng, T., Tian, Y., Zhu, Y., Cao, W., Zhang, Y., & Yao, X. (2018). A comparative assessment of different modeling algorithms for estimating leaf nitrogen content in winter wheat using multispectral images from an unmanned aerial vehicle. Remote Sensing, 10(12), 2026.

    Google Scholar 

  84. Zhou, G., & Yin, X. (2018). Assessing nitrogen nutritional status, biomass and yield of cotton with ndvi, spad and petiole sap nitrate concentration. Experimental Agriculture, 54(4), 531–548.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wu Xiao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zheng, W., Xiao, W. et al. Rapid monitoring of reclaimed farmland effects in coal mining subsidence area using a multi-spectral UAV platform. Environ Monit Assess 192, 474 (2020). https://doi.org/10.1007/s10661-020-08453-5

Download citation

Keywords

  • UAV
  • Monitoring
  • Mining subsidence
  • Backfilling reclamation
  • SPAD
  • Red-edge band