Cyclists’ exposure to air pollution: in situ evaluation with a cargo bike platform

Abstract

Cyclists’ exposure to air pollutants near roadways has been associated with numerous health effects. While the adverse health effects concerning aerosols have traditionally been assessed with data of particle mass concentrations, it appears that the number concentration is also another important indicator of toxicity. Thus, to holistically evaluate one’s exposure to aerosol particles, assessments should be based on mass concentrations and number concentrations. In order to assess individual cyclists’ exposure as they move through space and time, spatiotemporal high-resolution approaches are needed. Therefore, a mobile, fast-response monitoring platform was developed that uses a cargo bicycle as a base. Data of particle mass concentrations (PM1, PM2.5, PM10) and particle number concentrations (PN10) were collected along two different routes, one characterized by high-intensity vehicle traffic and one by low-intensity vehicle traffic. While high spatiotemporal heterogeneity was observed for all measured quantities, the PN10 concentrations fluctuated the most. High concentrations of PN10 could be clearly associated with vehicle traffic. For PM2.5, this relation was less pronounced. Mean particle concentrations of all measures were significantly higher along the high-traffic route. Comparing route exposures, the inhalation of PM2.5 was similar between both routes, whereas along the high-traffic route, cyclists were exposed to twice the particle number. We conclude that the cargo bike, featuring high-frequency mobile measurements, was useful to characterize the spatial distribution of mass concentrations and number concentrations across an urban environment. Overall, our results suggest that the choice of route is a key factor in reducing cyclists’ exposure to air pollution.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Amato, F., Cassee, F. R., van der Gon, H. A. D., Gehrig, R., Gustafsson, M., Hafner, W., et al. (2014). Urban air quality: the challenge of traffic non-exhaust emissions. Journal of Hazardous Materials, 275, 31–36.

    CAS  Google Scholar 

  2. Apparicio, P., Carrier, M., Gelb, J., Séguin, A. M., & Kingham, S. (2016). Cyclists' exposure to air pollution and road traffic noise in central city neighborhoods of Montreal. Journal of Transport Geography, 57, 63–69.

    Google Scholar 

  3. Badland, H. M., & Duncan, M. J. (2009). Perceptions of air pollution during the work-related commute by adults in Queensland, Australia. Atmospheric Environment, 43, 5791–5795.

    CAS  Google Scholar 

  4. Bauman, A. E., & Rissel, C. (2009). Cycling and health: an opportunity for positive change? Medical Journal of Australia, 190(7), 347–348.

    Google Scholar 

  5. Baxter, L. K., Wright, R. J., Paciorek, C. J., Laden, F., Suh, H. H., & Levy, J. I. (2010). Effects of exposure measurement error in the analysis of health effects from traffic-related air pollution. Journal of Exposure Science & Environmental Epidemiology, 20(1), 101–111.

    CAS  Google Scholar 

  6. Birmili, W., Rehn, J., Vogel, A., Boehlke, C., Weber, K., & Rasch, F. (2013). Micro-scale variability of urban particle number and mass concentrations in Leipzig, Germany. Meteorologische Zeitschrift, 22(2), 155–165.

    Google Scholar 

  7. Boogaard, H., Borgman, G., Kamminga, J., & Hoek, H. (2008). Exposure to ultrafine particles and noise during cycling and driving in 11 Dutch cities. Epidemiology, 19(6), S110.

    Google Scholar 

  8. Brand, V. S., Kumar, P., Damascena, A. S., Pritchard, J. P., Geurs, K. T., & de Fatima Andrade, M. (2019). Impact of route choice and period of the day on cyclists’ exposure to black carbon in London, Rotterdam and São Paulo. Journal of Transport Geography, 76, 153–165.

    Google Scholar 

  9. Broich, A. V., Gerharz, L. E., & Klemm, O. (2012). Personal monitoring of exposure to particulate matter with a high temporal resolution. Environmental Science and Pollution Research, 19, 2959–2972.

    CAS  Google Scholar 

  10. Brown, D. M., Wilson, M. R., MacNee, W., Stone, V., & Donaldson, K. (2001). Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicology and Applied Pharmacology, 175(3), 191–199.

    CAS  Google Scholar 

  11. De Hartog, J. J., Hoek, G., Mirme, A., Tuch, T., Kos, G. P., ten Brink, H. M., Brunekreef, B., Cyrys, J., Heinrich, J., Pitz, M., Lanki, T., Vallius, M., Pekkanen, J., & Kreyling, W. G. (2005). Relationship between different size classes of particulate matter and meteorology in three European cities. Journal of Environmental Monitoring, 7, 302–310.

    Google Scholar 

  12. Deventer, M. J., El-Madany, T.-S., Griessbaum, F., & Klemm, O. (2015). One-year measurement of size-resolved particle fluxes in an urban area. Tellus B, 67, 25531–25546.

    Google Scholar 

  13. Dewulf, B., Neutens, T., Van Dyck, D., De Bourdeaudhuij, I., Panis, L. I., Beckx, C., & Van de Weghe, N. (2016). Dynamic assessment of inhaled air pollution using GPS and accelerometer data. Journal of Transport & Health, 3(1), 114–123.

    Google Scholar 

  14. Environmental Protection Agency (2011). Exposure factors handbook EPA 600/ R-10/030. October 2011 Edition.

  15. Ferin, J., Oberdorster, G., & Penney, D. P. (1992). Pulmonary retention of ultrafine and fine particles in rats. American Journal of Respiratory Cell and Molecular Biology, 6(5), 535–542.

    CAS  Google Scholar 

  16. Gerike, R., de Nazelle, A., Nieuwenhuijsen, M., Panis, L. I., Anaya, E., Avila-Palencia, I., et al. (2016). Physical activity through sustainable transport approaches (PASTA): a study protocol for a multicentre project. BMJ Open, 6(1), e009924.

    Google Scholar 

  17. Gidhagen, L., Johansson, C., Langner, J., & Olivares, G. (2004). Simulation of NOx and ultrafine particles in a street canyon in Stockholm, Sweden. Atmospheric Environment, 38, 2029–2044.

    CAS  Google Scholar 

  18. Gietl, J. K., & Klemm, O. (2009). Source identification of size-segregated aerosol in Münster, Germany, by factor analysis. Aerosol Science and Technology, 43(8), 828–837.

    CAS  Google Scholar 

  19. Gietl, J. K., Tritscher, T., & Klemm, O. (2008). Size-segregated analysis of PM10 at two sites, urban and rural, in Münster (Germany) using five-stage Berner type impactors. Atmospheric Environment, 42(22), 5721–5727.

    CAS  Google Scholar 

  20. Gordian, M. E., Haneuse, S., & Wakefield, J. (2006). An investigation of the association between traffic exposure and the diagnosis of asthma in children. Journal of Exposure Science & Environmental Epidemiology, 16(1), 49–55.

    CAS  Google Scholar 

  21. Gryparis, A., Coull, B. A., Schwartz, J., & Suh, H. H. (2007). Semiparametric latent variable regression models for spatiotemporal modelling of mobile source particles in the greater Boston area. Journal of the Royal Statistical Society: Series C: Applied Statistics, 56(2), 183–209.

    Google Scholar 

  22. Ham, W., Vijayan, A., Schulte, N., & Herner, J. D. (2017). Commuter exposure to PM2. 5, BC, and UFP in six common transport microenvironments in Sacramento, California. Atmospheric Environment, 167, 335–345.

    CAS  Google Scholar 

  23. Hosiokangas, J., Kikas, U., Pekkanen, J., Ruuskanen, J., & Tammet, H. (1995). Identifying and quantifying air pollution sources in Kuopio by receptor modeling. Journal of Aerosol Science, 26, S423–S424.

    Google Scholar 

  24. Karagulian, F., Belis, C. A., Dora, C. F. C., Prüss-Ustün, A. M., Bonjour, S., Adair-Rohani, H., & Amann, M. (2015). Contributions to cities’ ambient particulate matter (PM): a systematic review of local source contributions at global level. Atmospheric Environment, 120, 475–483.

    CAS  Google Scholar 

  25. Kaur, S., Nieuwenhuijsen, M. J., & Colvile, R. N. (2007). Fine particulate matter and carbon monoxide exposure concentrations in urban street transport microenvironments. Atmospheric Environment, 41, 4781–4810.

    CAS  Google Scholar 

  26. Kelly, P., Kahlmeier, S., Götschi, T., Orsini, N., Richards, J., Roberts, N., Scarborough, P., & Foster, C. (2014). Systematic review and meta-analysis of reduction in all-cause mortality from walking and cycling and shape of dose response relationship. International Journal of Behavioral Nutrition and Physical Activity, 11(1), 132.

    Google Scholar 

  27. Ketzel, M., & Berkowicz, R. (2005). Multi-plume aerosol dynamics and transport model for urban scale particle pollution. Atmospheric Environment, 39, 3407–3420.

    CAS  Google Scholar 

  28. Ketzel, M., Omstedt, G., Johansson, C., Düring, I., Pohjola, M., Oettl, D., Gidhagen, L., Wåhlin, P., Lohmeyer, A., Haakana, M., & Berkowicz, R. (2007). Estimation and validation of PM2.5/PM10 exhaust and non-exhaust emission factors for practical street pollution modelling. Atmospheric Environment, 41(40), 9370–9385.

    CAS  Google Scholar 

  29. Kingham, S., Longley, I., Salmond, J., Pattinson, W., & Shrestha, K. (2013). Variations in exposure to traffic pollution while travelling by different modes in a low density, less congested city. Environmental Pollution, 181, 211–218.

    CAS  Google Scholar 

  30. Kousa, A., Oglesby, L., Koistinen, K., Künzli, N., & Jantunen, M. (2002). Exposure chain of urban air PM2. 5—associations between ambient fixed site, residential outdoor, indoor, workplace and personal exposures in four European cities in the EXPOLIS-study. Atmospheric Environment, 36(18), 3031–3039.

    CAS  Google Scholar 

  31. MacNaughton, P., Melly, S., Vallarino, J., Adamkiewicz, G., & Spengler, J. D. (2014). Impact of bicycle route type on exposure to traffic-related air pollution. Science of the Total Environment, 490, 37–43.

    CAS  Google Scholar 

  32. Manousakas, M., Papaefthymiou, H., Diapouli, E., Migliori, A., Karydas, A. G., Bogdanovic-Radovic, I., & Eleftheriadis, K. (2017). Assessment of PM2.5 sources and their corresponding level of uncertainty in a coastal urban area using EPA PMF 5.0 enhanced diagnostics. Science of the Total Environment, 574, 155–164.

    CAS  Google Scholar 

  33. Ning, Z., & Sioutas, C. (2010). Atmospheric processes influencing aerosols generated by combustion and the inference of their impact on public exposure: a review. Aerosol and Air Quality Resarch, 10(1), 43–58.

    CAS  Google Scholar 

  34. Oja, P., Titze, S., Bauman, A., De Geus, B., Krenn, P., Reger-Nash, B., & Kohlberger, T. (2011). Health benefits of cycling: a systematic review. Scandinavian journal of medicine & zscience in sports, 21(4), 496–509.

    CAS  Google Scholar 

  35. Paas, B., Schmidt, T., Markova, S., Maras, I., Ziefle, M., & Schneider, C. (2016). Small-scale variability of particulate matter and perception of air quality in an inner-city recreational area in Aachen, Germany. Meteorologische Zeitschrift, 25(3), 305–317.

    Google Scholar 

  36. Pattinson, W., Kingham, S., Longley, I., & Salmond, J. (2017). Potential pollution exposure reductions from small-distance bicycle lane separations. Journal of Transport & Health, 4, 40–52.

    Google Scholar 

  37. Penttinen, P., Timonen, K. L., Tiittanen, P., Mirme, A., Ruuskanen, J., & Pekkanen, J. (2001). Ultrafine particles in urban air and respiratory health among adult asthmatics. European Respiratory Journal, 17(3), 428–435.

    CAS  Google Scholar 

  38. Quiros, D. C., Zhang, Q., Choi, W., He, M., Paulson, S. E., Winer, A. M., Wang, R., & Zhu, Y. (2013). Air quality impacts of a scheduled 36-h closure of a major highway. Atmospheric Environment, 67, 404–414.

    CAS  Google Scholar 

  39. Sarnat, S. E., Klein, M., Sarnat, J. A., Flanders, W. D., Waller, L. A., Mulholland, J. A., Russell, A. G., & Tolbert, P. E. (2010). An examination of exposure measurement error from air pollutant spatial variability in time-series studies. Journal of Exposure Science & Environmental Epidemiology, 20(2), 135–146.

    CAS  Google Scholar 

  40. Thai, A., McKendry, I., & Brauer, M. (2008). Particulate matter exposure along designated bicycle routes in Vancouver, British Columbia. The Science of the Total Environment, 405, 26–35.

    CAS  Google Scholar 

  41. Van den Bossche, J., Peters, J., Verwaeren, J., Botteldooren, D., Theunis, J., & De Baets, B. (2015). Mobile monitoring for mapping spatial variation in urban air quality: development and validation of a methodology based on an extensive dataset. Atmospheric Environment, 105, 148–161.

    Google Scholar 

  42. Venkatachari, P., Zhou, L., Hopke, P. K., Felton, D., Rattigan, O. V., Schwab, J. J., & Demerjian, K. L. (2006). Spatial and temporal variability of black carbon in New York City. Journal of Geophysical Research-Atmospheres, 111(D10).

  43. Vinzents, P. S., Moller, P., Sorensen, M., Knudsen, L. E., Hertel, O., Jensen, F. P., Schibye, B., & Loft, S. (2005). Personal exposure to ultrafine particles and oxidative DNA damage. Environmental Health Perspectives, 113, 1485–1490.

    CAS  Google Scholar 

  44. Von Klot, S., Wölke, G., Tuch, T., Heinrich, J., Dockery, D. W., Schwartz, J., et al. (2002). Increased asthma medication use in association with ambient fine and ultrafine particles. European Respiratory Journal, 20(3), 691–702.

    Google Scholar 

  45. Wurzler, S., Hebbinghaus, H., Steckelbach, I., Schulz, T., Pompetzki, W., Memmesheimer, M., Jakobs, H., Schöllnhammer, T., Nowag, S., & Diegmann, V. (2016). Regional and local effects of electric vehicles on air quality and noise. Meteorologische Zeitschrift, 25, 319–325.

    Google Scholar 

Download references

Acknowledgments

We thank Celeste Brennecka for language editing of the manuscript.

Funding

This study was supported by a Visiting Professor Fellowship of the German Academic Exchange Service (DAAD) to Hebe Carreras, which is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hebe Carreras.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carreras, H., Ehrnsperger, L., Klemm, O. et al. Cyclists’ exposure to air pollution: in situ evaluation with a cargo bike platform. Environ Monit Assess 192, 470 (2020). https://doi.org/10.1007/s10661-020-08443-7

Download citation

Keywords

  • Cargo bike
  • Exposure assessment
  • Particle number concentration
  • Particle mass concentration