Skip to main content
Log in

Water quality assessment and pollution source apportionment in a highly regulated river of Northeast China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Dams and sluices break down the river continuum, alter the river hydrological regime, and intercept the migration processes of nutrients and pollutants. The regulation of dams and sluices will have great impacts on water quality characteristics in the river basin. In this study, variable fuzzy pattern recognition model (VFPR), principal component analysis/factor analysis (PCA/FA), and the absolute principal component score-multiple linear regression (APCS-MLR) were used to assess the water quality and identify the potential pollution sources in a highly regulated river of Northeast China. A set of water quality variables at three stations were measured from January 2015 to August 2017. The water quality assessment results showed that there were spatial and temporal variations of water quality and the total nitrogen (TN) and fecal coliforms (F. coli) were the major pollution factors of the study river section. Four pollution sources, including industrial effluent source, domestic sewage source, meteorological factor and atmospheric deposition source, and agricultural non-point source, were identified in dry and wet seasons using the PCA/FA method. The APCS-MLR results showed that the industrial effluent source was the main pollution source in dry seasons and had a decrease in wet seasons. While the mean contribution of the domestic sewage source had an increase in wet seasons, influenced by the sewage overflow and the flushing of pollutants during the extreme precipitation, the construction of dams decreased the flow obviously in wet seasons and increased in dry seasons. The increase in pollutants caused by storm runoff and the reduction of dilution water in the river channel could be the main reason for the water quality degradation in wet seasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • An, Y., Zou, Z., & Li, R. (2014). Water quality assessment in the Harbin reach of the Songhuajiang River (China) based on a fuzzy rough set and an attribute recognition theoretical model. International Journal of Environmental Research and Public Health, 11(4), 3507–3520. https://doi.org/10.3390/ijerph110403507.

    Article  CAS  Google Scholar 

  • Bansal, S., & Ganesan, G. (2019). Advanced evaluation methodology for water quality assessment using artificial neural network approach. Water Resources Management, 33(9), 3127–3141. https://doi.org/10.1007/s11269-019-02289-6.

    Article  Google Scholar 

  • Barakat, A., Baghdadi, M. E., Rais, J., Aghezzaf, B., & Slassi, M. (2016). Assessment of spatial and seasonal water quality variation of Oum Er Rbia River (Morocco) using multivariate statistical techniques. International Soil and Water Conservation Research, 4(4), 284–292. https://doi.org/10.1016/j.iswcr.2016.11.002.

    Article  Google Scholar 

  • Best, J. (2018). Anthropogenic stresses on the world's big rivers. Nature Geoscience, 12(1), 7–21. https://doi.org/10.1038/s41561-018-0262-x.

    Article  CAS  Google Scholar 

  • Bora, M., & Goswami, D. C. (2017). Water quality assessment in terms of water quality index (WQI): case study of the Kolong River, Assam, India. Applied Water Science, 7(6), 3125–3135.

    Article  Google Scholar 

  • Bu, H., Meng, W., & Zhang, Y. (2014a). Spatial and seasonal characteristics of river water chemistry in the Taizi River in Northeast China. Environmental Monitoring and Assessment, 186(6), 3619–3632. https://doi.org/10.1007/s10661-014-3644-6.

    Article  CAS  Google Scholar 

  • Bu, H., Meng, W., Zhang, Y., & Wan, J. (2014b). Relationships between land use patterns and water quality in the Taizi River basin, China. Ecological Indicators, 41, 187–197. https://doi.org/10.1016/j.ecolind.2014.02.003.

    Article  CAS  Google Scholar 

  • Chen, S. (2009). Theory and model of variable fuzzy sets and its application (1st ed.pp. 23–29). Dalian: Dalian University of Technology Press.

    Google Scholar 

  • Crockford, L., O’Riordain, S., Taylor, D., Melland, A. R., & Shortle, G. (2017). The application of high temporal resolution data in river catchment modelling and management strategies. Environmental Monitoring and Assessment, 189(9), 461. https://doi.org/10.1007/s10661-017-6174-1.

    Article  CAS  Google Scholar 

  • Dalal, S. G., Shirodkar, P. V., Jagtap, T. G., Naik, B. G., & Rao, G. S. (2010). Evaluation of significant sources influencing the variation of water quality of Kandla creek, Gulf of Katchchh, using PCA. Environmental Monitoring and Assessment, 163(1-4), 49–56. https://doi.org/10.1007/s10661-009-0815-y.

    Article  CAS  Google Scholar 

  • Dila, D. K., Corsi, S. R., Lenaker, P., Baldwin, A. K., Bootsma, M. J., & McLellan, S. (2018). Patterns of host-associated fecal indicators driven by hydrology, precipitation, and land use attributes in Great Lakes watersheds. Environmental Science & Technology, 52(20), 11500–11509. https://doi.org/10.1021/acs.est.8b01945.

    Article  CAS  Google Scholar 

  • Dolph, C. L., Boardman, E., Danesh-Yazdi, M., Finlay, J. C., Hansen, A. T., Baker, A. C., & Dalzell, B. (2019). Phosphorus transport in intensively managed watersheds. Water Resources Research, 55, 9148–9172. https://doi.org/10.1029/2018WR024009.

    Article  Google Scholar 

  • Dou, M., Zhang, Y., Zuo, Q. T., & Mi, Q. B. (2015). Identification of key factors affecting the water pollutant concentration in the sluice-controlled river reaches of the Shaying River in China via statistical analysis methods. Environmental Science: Processes and Impacts, 17(8), 1492–1502.

    CAS  Google Scholar 

  • Duan, W., He, B., Nover, D., Yang, G., Chen, W., Meng, H., Zou, S., & Liu, C. (2016). Water quality assessment and pollution source identification of the eastern Poyang Lake Basin using multivariate statistical methods. Sustainability., 8(2), 133. https://doi.org/10.3390/su8020133.

    Article  CAS  Google Scholar 

  • Farnham, I. M., Singh, A. K., Stetzenbach, K. J., & Johannesson, K. H. (2002). Treatment of nondetects in multivariate analysis of groundwater geochemistry data. Chemometrics and Intelligent Laboratory Systems, 60(1), 265–281.

    Article  CAS  Google Scholar 

  • Feng, F., Xu, S., Liu, J., Liu, D., & Wu, B. (2010). Comprehensive benefit of flood resources utilization through dynamic successive fuzzy evaluation model: a case study. Science China Technological Sciences, 53(2), 529–538. https://doi.org/10.1007/s11431-009-0396-6.

    Article  Google Scholar 

  • Fones, G. R., Bakir, A., Gray, J., Mattingley, L., Measham, N., Knight, P., Bowes, M. J., Greenwood, R., & Mills, G. A. (2020). Using high-frequency phosphorus monitoring for water quality management: a case study of the upper River Itchen, UK. Environmental Monitoring and Assessment, 192(3), 184. https://doi.org/10.1007/s10661-020-8138-0.

    Article  CAS  Google Scholar 

  • Gholizadeh, M. H., Melesse, A. M., & Reddi, L. (2016). Water quality assessment and apportionment of pollution sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida. Science of the Total Environment, 566, 1552–1567. https://doi.org/10.1016/j.scitotenv.2016.06.046.

    Article  CAS  Google Scholar 

  • Gillespie, B., Kay, P., & Brown, L. E. (2020). Limited impacts of experimental flow releases on water quality and macroinvertebrate community composition in an upland regulated river. Ecohydrology., 13(2), e2174. https://doi.org/10.1002/eco.2174.

    Article  CAS  Google Scholar 

  • Grill, G., Lehner, B., Lumsdon, A. E., MacDonald, G. K., Zarfl, C., & Liermann, C. R. (2015). An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environmental Research Letters, 10(1), 015001.

    Article  Google Scholar 

  • Habets, F., Molénat, J., Carluer, N., Douez, O., & Leenhardt, D. (2018). The cumulative impacts of small reservoirs on hydrology: a review. Science of the Total Environment, 643, 850–867. https://doi.org/10.1016/j.scitotenv.2018.06.188.

    Article  CAS  Google Scholar 

  • Harvey, J., Gomez-Velez, J., Schmadel, N., Scott, D., Boyer, E., Alexander, R., & Choi, J. (2019). How hydrologic connectivity regulates water quality in river corridors. Journal of the American Water Resources Association, 55(2), 369–381. https://doi.org/10.1111/1752-1688.12691.

  • Hayes, D. F., Labadie, J. W., Sanders, T. G., & Brown, J. K. (1998). Enhancing water quality in hydropower system operations. Water Resources Research, 34(3), 471–483. https://doi.org/10.1029/97WR03038.

    Article  CAS  Google Scholar 

  • He, Y., Meng, W., Xu, J., Zhang, Y., & Guo, C. (2016). Spatial distribution and potential toxicity of polycyclic aromatic hydrocarbons in sediments from Liaohe River Basin, China. Environmental Monitoring and Assessment, 188, 193. https://doi.org/10.1007/s10661-016-5201-y.

    Article  CAS  Google Scholar 

  • Hu, S. D., Wang, T. X., Xu, S. G., Ma, L. X., & Sun, X. G. (2019). Seasonal release potential of sediments in reservoirs and its impact on water quality assessment. International Journal of Environmental Research and Public Health, 16(18), 3303. https://doi.org/10.3390/ijerph16183303.

    Article  CAS  Google Scholar 

  • Huang, F., Wang, X., Lou, L., Zhou, Z., & Wu, J. (2010). Spatial variation and source apportionment of water pollution in Qiantang River (China) using statistical techniques. Water Research, 44(5), 1562–1572. https://doi.org/10.1016/j.watres.2009.11.003.

    Article  CAS  Google Scholar 

  • Jeong, K. S., Kim, D. K., Shin, H. S., Kim, H. W., Cao, H., Jang, M. H., & Joo, G. J. (2010). Flow regulation for water quality (chlorophyll a) improvement. International Journal of Environmental Research, 4(4), 713–724 http://orcid.org/0000-0001-7721-4937.

    Google Scholar 

  • Kang, P., Liu, P., & Wang, F. (2019). Use of multiple isotopes to evaluate the impact of mariculture on nutrient dynamics in coastal groundwater. Environmental Science and Pollution Research, 26(12), 12399–12411. https://doi.org/10.1007/s11356-019-04645-w.

    Article  CAS  Google Scholar 

  • Kolesar, P., & Serio, J. (2011). Breaking the deadlock: improving water-release policies on the Delaware River through operations research. Interfaces, 41(1), 18–34. https://doi.org/10.1287/inte.1100.0536.

    Article  Google Scholar 

  • Larson, T., Gould, T., Riley, E. A., Austin, E., Fintzi, J., Sheppard, L., Yost, M., & Simpson, C. (2017). Ambient air quality measurements from a continuously moving mobile platform: Estimation of area-wide, fuel-based, mobile source emission factors using absolute principal component scores. Atmospheric Environment, 152, 201–211. https://doi.org/10.1016/j.atmosenv.2016.12.037.

    Article  CAS  Google Scholar 

  • McLellan, S. L., Hollis, E. J., Depas, M. M., Van Dyke, M., Harris, J., & Scopel, C. O. (2007). Distribution and fate of Escherichia coli in Lake Michigan following contamination with urban stormwater and combined sewer overflows. Journal of Great Lakes Research, 33(3), 566–580.

    Article  Google Scholar 

  • McMillan, S. K., Wilson, H. F., Tague, C. L., Hanes, D. M., Inamdar, S., Karwan, D. L., Loecke, T., Morrison, J., Murphy, S. F., & Vidon, P. (2018). Before the storm: antecedent conditions as regulators of hydrologic and biogeochemical response to extreme climate events. Biogeochemistry, 141(3), 487–501.

    Article  CAS  Google Scholar 

  • Nilsson, C., Reidy, C. A., Dynesius M., & Revenga, C. (2005). Fragmentation and flow regulation of the world’s large river systems. Science, 308(5720), 405–408. https://doi.org/10.1126/science.1107887.

  • Ogundele, L. T., Owoade, O. K., Olise, F. S., & Hopke, P. K. (2016). Source identification and apportionment of PM2.5 and PM2.5-10 in iron and steel scrap smelting factory environment using PMF, PCFA and UNMIX receptor models. Environmental Monitoring and Assessment, 188(10), 574. https://doi.org/10.1007/s10661-016-5585-8.

    Article  CAS  Google Scholar 

  • Panasiuk, O., Hedstrom, A., Marsalek, J., Ashley, R. M., & Viklander, M. (2015). Contamination of stormwater by wastewater: a review of detection methods. Journal of Environmental Management, 152, 241–250.

    Article  CAS  Google Scholar 

  • Pettit, N. E., Jardine, T. D., Hamilton, S. K., Sinnamon, V., Valdez, D., Davies, P. M., Douglas, M. M., & Bunn, S. E. (2012). Seasonal changes in water quality and macrophytes and the impact of cattle on tropical floodplain waterholes. Marine and Freshwater Research, 63(9), 788–800. https://doi.org/10.1071/MF12114.

    Article  Google Scholar 

  • Pinto, C. C., Calazans, G. M., & Oliveira, S. C. (2019). Assessment of spatial variations in the surface water quality of the Velhas River Basin, Brazil, using multivariate statistical analysis and nonparametric statistics. Environmental Monitoring and Assessment, 191(3), 164. https://doi.org/10.1007/s10661-019-7281-y.

    Article  Google Scholar 

  • Quinn, C. L., Armitage, J. M., Wania, F., & Arnot, J. A. (2019). Development and evaluation of a combined bioenergetics and organic chemical mass-balance bioaccumulation model for fish. Environmental Science & Technology, 53(2), 752–759. https://doi.org/10.1021/acs.est.8b04382.

    Article  CAS  Google Scholar 

  • Ren, Y., Li, J., Ren, N., & Li, X. (2012). The application of fuzzy comprehensive evaluation method in non-point pollution on wetland water environmental impact. Advanced Materials, 518, 4948–4962.

    Google Scholar 

  • Sercu, B., Van De Werfhorst, L. C., Murray, J. L. S., & Holden, P. A. (2011). Sewage exfiltration as a source of storm drain contamination during dry weather in urban watersheds. Environmental Science & Technology, 45(17), 7151–7157.

    Article  CAS  Google Scholar 

  • Shehzad, M. T., Murtaza, G., Shafeeque, M., Shafeeque, M., Sabir, M., Nawaz, H., & Khan, M. J. (2019). Assessment of trace elements in urban topsoils of Rawalpindi-Pakistan: a principal component analysis approach. Environmental Monitoring and Assessment, 191(2), 65. https://doi.org/10.1007/s10661-019-7212-y.

    Article  CAS  Google Scholar 

  • Shi, W., Xia, J., & Zhang, X. (2016). Influences of anthropogenic activities and topography on water quality in the highly regulated Huai River basin, China. Environmental Science and Pollution Research, 23(21), 21460–21474.

    Article  CAS  Google Scholar 

  • Shrestha, S., & Karama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin, Japan. Environmental Modelling & Software, 22(4), 464–475.

    Article  Google Scholar 

  • Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., et al. (2003). Assessment of the surface water quality in Northern Greece. Water Research, 37(17), 4119–4124. https://doi.org/10.1016/S0043-1354(03)00398-1.

    Article  CAS  Google Scholar 

  • Soto, D. X., Koehler, G., Wassenaar, L. I., & Hobson, K. A. (2019). Spatio-temporal variation of nitrate sources to Lake Winnipeg using N and O isotope (delta N-15, delta O-18) analyses. Science of the Total Environment, 647, 486–493. https://doi.org/10.1016/j.scitotenv.2018.07.346.

    Article  CAS  Google Scholar 

  • Srinivas, R., & Singh, A. P. (2018). An integrated fuzzy-based advanced eutrophication simulation model to develop the best management scenarios for a river basin. Environmental Science and Pollution Research, 25(9), 9012–9039. https://doi.org/10.1007/s11356-018-1206-0.

    Article  Google Scholar 

  • Templar, H. A., Dila, D. K., Bootsma, M. J., Corsi, S. R., & McLellan, S. L. (2016). Quantification of human-associated fecal indicators reveal sewage from urban watersheds as a source of pollution to Lake Michigan. Water Research, 100, 556–567.

    Article  CAS  Google Scholar 

  • Thurston, G. D., & Spengler, J. D. (1985). A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmospheric Environment, 19, 9–25. https://doi.org/10.1016/0004-6981(85)90132-5.

    Article  CAS  Google Scholar 

  • Todd, A. S., Manning, A. H., Verplanck, P. L., Crouch, C., McKnight, D. M., & Dunham, R. (2012). Climate-change-driven deterioration of water quality in a mineralized watershed. Environmental Science and Technology, 46(17), 9324–9332. https://doi.org/10.1021/es3020056.

    Article  CAS  Google Scholar 

  • Vorosmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., et al. (2010). Global threats to human water security and river biodiversity. Nature, 467(7315), 555–561. https://doi.org/10.1038/nature09440.

    Article  CAS  Google Scholar 

  • Wan, J., Bu, H., Zhang, Y., & Meng, W. (2013). Classification of rivers based on water quality assessment using factor analysis in Taizi River basin, northeast China. Environmental Earth Sciences, 69(3), 909–919.

    Article  CAS  Google Scholar 

  • Wang, T., Xu, S., & Liu, J. (2017). Dynamic assessment of comprehensive water quality considering the release of sediment pollution. Water, 9(4), 275. https://doi.org/10.3390/w9040275.

    Article  CAS  Google Scholar 

  • Wei, G., Yang, Z., Cui, B., Li, B., Chen, H., Bai, J., & Dong, S. (2009). Impact of dam construction on water quality and water self-purification capacity of the Lancang River, China. Water Resources Management, 23(9), 1763–1780. https://doi.org/10.1007/s11269-008-9351-8.

    Article  Google Scholar 

  • Winton, R. S., Calamita, E., & Wehrli, B. (2019). Reviews and syntheses: dams, water quality and tropical reservoir stratification. Biogeosciences, 16(8), 1657–1671. https://doi.org/10.5194/bg-16-1657-2019.

    Article  CAS  Google Scholar 

  • Xu, S., Wang, T., & Hu, S. (2015). Dynamic assessment of water quality based on a variable fuzzy pattern recognition model. International Journal of Environmental Research and Public Health, 12, 2230–2248. https://doi.org/10.3390/ijerph120202230.

    Article  CAS  Google Scholar 

  • Yang, J., & Zhang, L. (2012). Fuzzy comprehensive evaluation method on water environmental quality based on entropy weight with consideration of toxicology of evaluation factors. Advanced Materials, 356, 2383–2388. https://doi.org/10.4028/www.scientific.net/AMR.356-360.2383.

    Article  CAS  Google Scholar 

  • Yang, L., Mei, K., Liu, X., Wu, L., Zhang, M., Xu, J., & Wang, F. (2013). Spatial distribution and source apportionment of water pollution in different administrative zones of Wen-Rui-Tang (WRT) river watershed, China. Environmental Science and Pollution Research, 20, 5341–5352. https://doi.org/10.1007/s11356-013-1536-x.

    Article  CAS  Google Scholar 

  • Zhai, X., Xia, J., & Zhang, Y. (2014). Water quality variation in the highly disturbed Huai River Basin, China from 1994 to 2005 by multi-statistical analyses. Science of the Total Environment, 496, 594–606. https://doi.org/10.1016/j.scitotenv.2014.06.101.

    Article  CAS  Google Scholar 

  • Zhai, X., Xia, J., & Zhang, Y. (2017). Integrated approach of hydrological and water quality dynamic simulation for anthropogenic disturbance assessment in the Huai River Basin, China. Science of the Total Environment, 598, 749–764. https://doi.org/10.1016/j.scitotenv.2017.04.092.

    Article  CAS  Google Scholar 

  • Zhang, Y., Xia, J., Shao, Q., & Zhai, X. (2012a). Experimental and simulation studies on the impact of sluice regulation on water quantity and quality processes. Journal of Hydrologic Engineering, 17(4), 467–477. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000463.

    Article  Google Scholar 

  • Zhang, Y., Arthington, A. H., Bunn, S. E., Mackay, S., Xia, J., & Kennaed, M. (2012b). Classification of flow regimes for environmental flow assessment in regulated rivers: the Huai River Basin, China. River Research and Applications, 28(7), 989–1005.

    Article  Google Scholar 

  • Zhang, Y., Xia, J., Shao, Q., & Zhai, X. (2013). Water quantity and quality simulation by improved SWAT in highly regulated Huai River Basin of China. Stochastic Environmental Research and Risk Assessment, 27, 11–27. https://doi.org/10.1007/s00477-011-0546-9.

    Article  CAS  Google Scholar 

  • Zhang, Q., Hirsch, R., & Ball, P. W. (2016). Long-Term changes in sediment and nutrient delivery from Conowingo Dam to Chesapeake Bay: effects of reservoir sedimentation. Environmental Science & Technology, 50, 1877–1886. https://doi.org/10.1021/acs.est.5b04073.

    Article  CAS  Google Scholar 

  • Zhou, F., Guo, H., & Liu, L. (2007). Quantitative identification and source apportionment of anthropogenic heavy metals in marine sediment of Hong Kong. Environmental Geology, 53(2), 295–305.

    Article  CAS  Google Scholar 

  • Zielinski, M., Dopieralska, J., Belka, Z., Walczak, A., Siepak, M., & Jakubowicz, M. (2016). Sr isotope tracing of multiple water sources in a complex river system, Notec River, Poland. Science of the Total Environment, 548, 307–316. https://doi.org/10.1016/j.scitotenv.2016.01.036.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The datasets were obtained from the Benxi city sub-center of the Liaoning province water environment monitoring center.

Funding

This research was supported by the National Key Research and Development Program of China (2016YFC0400903) and the Natural Sciences Foundation of China (51679026; 51809032; 51879031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, G., Liu, J., Xu, S. et al. Water quality assessment and pollution source apportionment in a highly regulated river of Northeast China. Environ Monit Assess 192, 446 (2020). https://doi.org/10.1007/s10661-020-08404-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08404-0

Keywords

Navigation