An experimental application of laser-scattering sensor to estimate the traffic-induced PM2.5 in Beijing

Abstract

Traffic-induced air pollutant emissions are currently rising rapidly. However, measurement of the roadside environment and calculation of the emission factors for traffic-induced PM2.5 are restricted to certain locations and periods due to the limitations of conventional air monitoring techniques. This paper introduces a portable sensor package with a laser light-scattering PM2.5 sensor and an electrochemical CO sensor to measure roadside PM2.5 and CO concentrations. The low-cost sensor package underwent local calibration using reference instruments at the Chinese Research Academy of Environmental Sciences (CRAES). The results showed a high level of correlation (r in the range of 0.94–0.95 and 0.81–0.83 for PM2.5 and CO, respectively) between measurements using the sensor packages and those measured by the reference equipment. The study found that the low-cost sensor packages were able to deliver reliable measurements of PM2.5 and CO concentrations. Four low-cost sensor packages were deployed along a short section of an expressway to measure roadside PM2.5 and CO concentrations. The directly measured concentrations were firstly calibrated with the temperature and humidity. The corrected PM2.5 concentrations from each side of the road were different, while the corrected CO concentrations were similar on both sides of the road. Therefore, only the PM2.5 measurements were applied in this study’s box model. The assumption of perfect mixing in order for the box model to be applied was shown by the results to be valid to some extent. The PM2.5 emission factors for opposite sides of the road should be calculated separately based on the direction of traffic flow. The PM2.5 emission factors calculated in this study were variable, being impacted by traffic conditions and meteorological conditions. The paper presents a method for obtaining PM2.5 emission factors based on a box model. This method is a promising way of monitoring air pollution in the roadside environment.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Amato, F., Favez, O., Pandolfi, M., Alastuey, A., Querol, X., Moukhtar, S., Bruge, B., Verlhac, S., Orza, J. A. G., Bonnaire, N., le Priol, T., Petit, J. F., & Sciare, J. (2016). Traffic induced particle resuspension in Paris: Emission factors and source contributions. Atmospheric Environment, 129, 114–124. https://doi.org/10.1016/j.atmosenv.2016.01.022.

    CAS  Article  Google Scholar 

  2. Badura, M., Batog, P., Drzeniecka-Osiadacz, A., & Modzel, P. (2018). Evaluation of low-cost sensors for ambient PM2.5 monitoring. Journal of Sensors, 2018, 1–16. https://doi.org/10.1155/2018/5096540.

    CAS  Article  Google Scholar 

  3. Baldauf, R. (2017). Roadside vegetation design to improve local, near-road air quality. Transportation Research Part D: Transport and Environment, 52(11), 354–361. https://doi.org/10.1016/j.trd.2017.03.013.

    Article  Google Scholar 

  4. Bamdad Mehrabani, B., & Mirbaha, B. (2018). Evaluating the relationship between operating speed and collision frequency of rural multilane highways based on geometric and roadside features. Civil Engineering Journal, 4(3). https://doi.org/10.28991/cej-0309120.

  5. Brook, R. D., Rajagopalan, S., Pope III, C. A., Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., et al. (2010). Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation, 121(21), 2331–2378. https://doi.org/10.1161/CIR.0b013e3181dbece1.

    CAS  Article  Google Scholar 

  6. Bulot, F. M. J., Johnston, S. J., Basford, P. J., Easton, N. H. C., Apetroaie-Cristea, M., Foster, G. L., Morris, A. K. R., Cox, S. J., & Loxham, M. (2019). Long-term field comparison of multiple low-cost particulate matter sensors in an outdoor urban environment. Scientific Reports, 9(1), 7497. https://doi.org/10.1038/s41598-019-43716-3.

    CAS  Article  Google Scholar 

  7. Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain, B., Broday, D., & Bartonova, A. (2017). Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environment International, 99, 293–302. https://doi.org/10.1016/j.envint.2016.12.007.

    CAS  Article  Google Scholar 

  8. Choi, J. (2015). Assessment of beta attenuation monitoring for particlulate matter (PM2.5) in Victoria. In Clean Air Society of Australia and New Zealand, 2015.

    Google Scholar 

  9. Cohen, A. J., & Pope 3rd, C. A. (1995). Lung cancer and air pollution. Environmental Health Perspectives, 103(Suppl 8), 219–224. https://doi.org/10.1289/ehp.95103s8219.

    Article  Google Scholar 

  10. Du, Q., Hong, Z., & Liu, X. (2016). Analysis of atmospheric boundary layer characteristics during strong winter wind processes in Beijing. Climatic and Environmental Research, 22(2), 212–220. https://doi.org/10.3878/j.issn.1006-9585.2016.16086.

    Article  Google Scholar 

  11. Feenstra, B., Papapostolou, V., Hasheminassab, S., Zhang, H., Boghossian, B. D., Cocker, D., et al. (2019). Performance evaluation of twelve low-cost PM2.5 sensors at an ambient air monitoring site. Atmospheric Environment, 216, 116946. https://doi.org/10.1016/j.atmosenv.2019.116946.

    CAS  Article  Google Scholar 

  12. Ferm, M., & Sjöberg, K. (2015). Concentrations and emission factors for PM2.5 and PM10 from road traffic in Sweden. Atmospheric Environment, 119, 211–219. https://doi.org/10.1016/j.atmosenv.2015.08.037.

    CAS  Article  Google Scholar 

  13. Giannouli, M., Kalognomou, E.-A., Mellios, G., Moussiopoulos, N., Samaras, Z., & Fiala, J. (2011). Impact of European emission control strategies on urban and local air quality. Atmospheric Environment, 45(27), 4753–4762. https://doi.org/10.1016/j.atmosenv.2010.03.016.

    CAS  Article  Google Scholar 

  14. Gooch, J. W. (2011). Beer-Bouguer law (Beer-Lambert law).

    Google Scholar 

  15. He, C., Morawska, L., & Gilbert, D. (2005). Particle deposition rates in residential houses. Atmospheric Environment, 39(21), 3891–3899. https://doi.org/10.1016/j.atmosenv.2005.03.016.

    CAS  Article  Google Scholar 

  16. Jamriska, M., & Morawska, L. (2001). A model for determination of motor vehicle emission factors from on-road measurements with a focus on submicrometer particles. Science of the Total Environment, 264(3), 241–255. https://doi.org/10.1016/S0048-9697(00)00720-8.

    CAS  Article  Google Scholar 

  17. Jang, J., & Lim, S. (2013). Individual vehicle level evaluation of loop, video image, and microwave detector. In 20th ITS (Intelligent Transport Systems) World Congress, 2013.

    Google Scholar 

  18. Jayaratne, R., Liu, X., Thai, P., Dunbabin, M., & Morawska, L. (2018). The influence of humidity on the performance of low-cost air particle mass sensors and the effect of atmospheric fog. Atmospheric Measurement Techniques Discussions, 2018, 1–15. https://doi.org/10.5194/amt-2018-100.

    Article  Google Scholar 

  19. Jayaratne, E. R., Liu, X., Ahn, K.-H., Asumadu-Sakyi, A., Fisher, G., Gao, J., et al. (2020). Low-cost PM2.5 sensors: An assessment of their suitability for various applications. Aerosol and Air Quality Research, 20(3), 520–532. https://doi.org/10.4209/aaqr.2018.10.0390.

    Article  Google Scholar 

  20. Jones, A. M., & Harrison, R. M. (2006). Estimation of the emission factors of particle number and mass fractions from traffic at a site where mean vehicle speeds vary over short distances. Atmospheric Environment, 40(37), 7125–7137. https://doi.org/10.1016/j.atmosenv.2006.06.030.

    CAS  Article  Google Scholar 

  21. Kelly, K. E., Whitaker, J., Petty, A., Widmer, C., Dybwad, A., Sleeth, D., Martin, R., & Butterfield, A. (2017). Ambient and laboratory evaluation of a low-cost particulate matter sensor. Environmental Pollution, 221, 491–500. https://doi.org/10.1016/j.envpol.2016.12.039.

    CAS  Article  Google Scholar 

  22. Kuhn, T., Biswas, S., Fine, P. M., Geller, M., & Sioutas, C. (2005). Physical and chemical characteristics and volatility of PM in the proximity of a light-duty vehicle freeway. Aerosol Science and Technology, 39(4), 347–357. https://doi.org/10.1080/027868290930024.

    CAS  Article  Google Scholar 

  23. Levy Zamora, M., Xiong, F., Gentner, D., Kerkez, B., Kohrman-Glaser, J., & Koehler, K. (2019). Field and laboratory evaluations of the low-cost Plantower particulate matter sensor. Environmental Science & Technology, 53(2), 838–849. https://doi.org/10.1021/acs.est.8b05174.

    CAS  Article  Google Scholar 

  24. Liu, Y., Gao, Y., Yu, N., Zhang, C., Wang, S., Ma, L., Zhao, J., & Lohmann, R. (2015). Particulate matter, gaseous and particulate polycyclic aromatic hydrocarbons (PAHs) in an urban traffic tunnel of China: Emission from on-road vehicles and gas-particle partitioning. Chemosphere, 134, 52–59. https://doi.org/10.1016/j.chemosphere.2015.03.065.

    CAS  Article  Google Scholar 

  25. Liu, D., Zhang, Q., Jiang, J., & Chen, D.-R. (2017). Performance calibration of low-cost and portable particular matter (PM) sensors. Journal of Aerosol Science, 112, 1–10. https://doi.org/10.1016/j.jaerosci.2017.05.011.

    CAS  Article  Google Scholar 

  26. Morawska, L., Jamriska, M., Thomas, S., Ferreira, L., Mengersen, K., Wraith, D., & McGregor, F. (2005). Quantification of particle number emission factors for motor vehicles from on-road measurements. Environmental Science & Technology, 39(23), 9130–9139. https://doi.org/10.1021/es050069c.

    CAS  Article  Google Scholar 

  27. National Research Council. (2010). HCM2010: Highway capacity manual (5th ed.). Washington: Transportation Research Board.

    Google Scholar 

  28. Ntziachristos, L., Gkatzoflias, D., Kouridis, C., & Samaras, Z. (2009). COPERT: A European road transport emission inventory model. In Information Technologies in Environmental Engineering, Proceedings of the International ICSC (International Computer Science Conventions) Symposium, ITEE (Information Technologies in Environmental Engineering) 2009 (pp. 491–504). Thessaloniki.

  29. Querol, X., Alastuey, A., Ruiz, C. R., Artiñano, B., Hansson, H. C., Harrison, R. M., Buringh, E., ten Brink, H. M., Lutz, M., Bruckmann, P., Straehl, P., & Schneider, J. (2004). Speciation and origin of PM10 and PM2.5 in selected European cities. Atmospheric Environment, 38(38), 6547–6555. https://doi.org/10.1016/j.atmosenv.2004.08.037.

    CAS  Article  Google Scholar 

  30. Sonntag, D. B., Gao, H. O., & Holmén, B. A. (2013). Comparison of particle mass and number emissions from a diesel transit bus across temporal and spatial scales. Transportation Research Part D: Transport and Environment, 25, 146–154. https://doi.org/10.1016/j.trd.2013.09.005.

    Article  Google Scholar 

  31. Sun, L., Wong, K. C., Wei, P., Ye, S., Huang, H., Yang, F., Westerdahl, D., Louie, P.K., Luk, C.W., Ning, Z. (2016). Development and application of a next generation air sensor network for the Hong Kong Marathon 2015 air quality monitoring. Sensors (Basel), 16(2).

  32. USEPA (United States Environmental Protection Agency) (2020). National Ambient Air Quality Standards (NAAQS) for PM. https://www.epa.gov/pm-pollution/national-ambient-air-quality-standards-naaqs-pm. (Accessed April 17 2020).

  33. Wang, J., Case, E. R., & Manor, D. (1992). The road traffic microwave sensor (RTMS). In the International Conference on Vehicle Navigation and Information Systems (pp. 83–90).

    Google Scholar 

  34. Wang, F., Ketzel, M., Ellermann, T., Wåhlin, P., Jensen, S. S., et al. (2010). Particle number, particle mass and NOx emission factors at a highway and an urban street in Copenhagen. Atmospheric Chemistry and Physics, 10(6), 2745–2764. https://doi.org/10.5194/acp-10-2745-2010.

    CAS  Article  Google Scholar 

  35. Wang, J., Zhao, L., Zhu, D., Gao, H. O., Xie, Y., Li, H., Xu, X., & Wang, H. (2016). Characteristics of particulate matter (PM) concentrations influenced by piston wind and train door opening in the Shanghai subway system. Transportation Research Part D: Transport and Environment, 47, 77–88. https://doi.org/10.1016/j.trd.2016.05.006.

    Article  Google Scholar 

  36. Wei, P., Ning, Z., Ye, S., Sun, L., Yang, F., Wong, K., Westerdahl, D., & Louie, P. (2018). Impact analysis of temperature and humidity conditions on electrochemical sensor response in ambient air quality monitoring. Sensors, 18(2), 59. https://doi.org/10.3390/s18020059.

    CAS  Article  Google Scholar 

  37. Yi, W.-Y., Leung, K.-S., & Leung, Y. (2018). A modular plug-and-play sensor system for urban air pollution monitoring: Design, implementation and evaluation. Sensors, 18(1), 7.

    Google Scholar 

  38. Yong, Z. (2016). Digital universal particle concentration sensor PMS1003 series data manual (2.5 ed.). Plantower.

  39. Zaldei, A., Camilli, F., De Filippis, T., Di Gennaro, F., Di Lonardo, S., Dini, F., et al. (2017). An integrated low-cost road traffic and air pollution monitoring platform for next citizen observatories. Transportation Research Procedia, 24, 531–538. https://doi.org/10.1016/j.trpro.2017.06.002.

    Article  Google Scholar 

  40. Zhang, Y.-L., & Cao, F. (2015). Fine particulate matter (PM2.5) in China at a city level. Scientific Reports, 5(1), 14884. https://doi.org/10.1038/srep14884.

    CAS  Article  Google Scholar 

  41. Zhang, K. M., & Wexler, A. S. (2004). Evolution of particle number distribution near roadways. Part I: Analysis of aerosol dynamics and its implications for engine emission measurement. Atmospheric Environment, 38(38), 6643–6653. https://doi.org/10.1016/j.atmosenv.2004.06.043.

    CAS  Article  Google Scholar 

  42. Zhang, K. M., Wexler, A. S., Zhu, Y. F., Hinds, W. C., & Sioutas, C. (2004). Evolution of particle number distribution near roadways. Part II: The ‘road-to-ambient’ process. Atmospheric Environment, 38(38), 6655–6665. https://doi.org/10.1016/j.atmosenv.2004.06.044.

    CAS  Article  Google Scholar 

  43. Zheng, T., Bergin, M. H., Johnson, K. K., Tripathi, S. N., Shirodkar, S., Landis, M. S., et al. (2018). Field evaluation of low-cost particulate matter sensors in high and low concentration environments. Atmospheric Measurement Techniques Discussions, 1–40. https://doi.org/10.5194/amt-2018-111.

Download references

Acknowledgments

Special thanks to Professor Jian Gao from the Chinese Research Academy of Environmental Sciences for providing the air quality data for the calibration of KOALAs. Special thanks to Xiaobu Yang of the Transportation Operations Coordination Center (TOCC), Beijing Municipal Commission of Transport, for providing the traffic data for the calculation of emission factors. Ms. Xiaoting Liu would like to thank the China Scholarship Council for sponsoring her PhD studies at Queensland University of Technology (QUT).

Funding

This research was partially supported by the Natural Science Foundation of China (NSFC) # 51678045 and the Henan Department of Transportation project # 2018G3. 

Author information

Affiliations

Authors

Contributions

Sicong Zhu designed the experiment. Xiaoting Liu, Qi Zhao, and Wenjie Peng carried out the experiment. Xiaoting Liu wrote the manuscript with support from Sicong Zhu and Qi Zhao. Wenjie Peng conceived the original idea. Lei Yu helped supervise the project.

Corresponding author

Correspondence to Sicong Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhao, Q., Zhu, S. et al. An experimental application of laser-scattering sensor to estimate the traffic-induced PM2.5 in Beijing. Environ Monit Assess 192, 450 (2020). https://doi.org/10.1007/s10661-020-08398-9

Download citation

Keywords

  • PM2.5
  • Emission factor
  • Laser-scattering sensor
  • Box model