Monitoring of the process of waste landfill leachate diffusion in clay and sandy soil


The objective of this research was to evaluate the interaction of landfill leachate of urban solid waste in clayey (CL) and sandy soils (SL) in order to determine physical and chemical parameters that can be used as indicators of soil contamination when there are faults in the landfill waterproofing. In the diffusion tests, compacted soil samples were placed in contact with leachate (methanogenic phase). The temporal analysis (200 days) considered the parameters pH, electrical conductivity (EC), alkalinity, nitrogen series, chemical oxygen demand (COD), solids and color for the leachate and pH, ΔpH, EC, total nitrogen (TN), chemical elements, and cation exchange capacity (CEC) for the soils. Correlation analysis and principal component analysis (PCA) were performed to results. It was observed that the studied soils have potential to attenuate chemicals present in the leachate; this indicates the possibility of using them as base in landfills. Correlation analysis and PCA carried out to CL showed that in a process of CL monitoring the pH would be the key parameter to indicate contamination of this soil, due to the high correlation of this parameter with the others analyzed. For the SL, the parameters pH, alkalinity, apparent color, and COD (total and filtered) could be used as indicators of contamination. In both soils, monitoring of concentrations of Ca, Mg, K, SB, V, and CTC can be used to indicate possible faults in the waterproofing system of the landfill.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. Aboyeji, O. S., & Eigbokhan, S. F. (2016). Evaluations of groundwater contamination by leachates around Olusosun open dumpsite in Lagos metropolis, southwest Nigeria. Journal of Environmental Management.

  2. Akpan, A. E., Ugbaja, A. N., Okoyeh, E. I., & George, N. J. (2018). Assessment of spatial distribution of contaminants and their levels in soil and water resources of Calabar, Nigeria using geophysical and geological data. Environment and Earth Science, 77, 13.

    CAS  Article  Google Scholar 

  3. APHA – American Public Health Association. (2005). Standard methods for the examination of water and wastewater (Vol. 21, p. 1082). Washington: APHA, AWWA, WPCF.

    Google Scholar 

  4. Arunbabu, K., Indu, S., & Ramasamy, E. V. (2017). Leachate pollution index as an effective tool in determining the phytotoxicity of municipal solid waste leachate. Waste Management.

  5. Barone, F. S. (1989) Determination of diffusion and adsorption coefficients for some contaminants in clayey soil and rock: laboratory determination and field evaluation. Doctoral thesis – University of Western Ontario.

  6. Canellas, L. P., Zandonadi, D. B., Médici, L. O., Peres, L. E. P., Olivares, F. L., & Façanha, A. R. (2005). Bioatividade de substâncias húmicas: ação sobre desenvolvimento e metabolismo das plantas. In L. P. Canellas & G. A. Santos (Eds.), Humosfera: tratado preliminar sobre a química das substâncias húmicas (pp. 224–243). Campos dos Goytacazes: CCTA, UENF.

    Google Scholar 

  7. Christensen, T. H., Kjeldsen, P., Bjerg, P. L., Jensen, D. L., Christensen, J. B., Baun, A., Albrechtsen, H. J., & Heron, G. (2001). Review: biogeochemistry of landfill leachate plumes. Applied Geochemistry.

  8. Cronan, C.S. (2018) Soil biogeochemistry. In: Ecosystem biogeochemistry. Springer Textbooks in Earth Sciences, Geography and Environment. Springer.

  9. De Melo, T. R., Figueiredo, A., Machado, W., & Tavares Filho, J. (2019). Changes on soil structural stability after in natura and composted chicken manure application. International Journal of Recycling of Organic Waste in Agriculture, 8, 1–6.

    Article  Google Scholar 

  10. EPA – Environmental Protection Agency. (1993). Manual: Nitrogen. Cincinnati: Ohio.

    Google Scholar 

  11. Gonçalves, F., Souza, C. H. U., Tahira, F. S., Fernandes, F., & Teixeira, R. S. (2018). Incremento de lodo de ETA em barreiras impermeabilizantes de aterro sanitário. Revista DAE.

  12. Han, Z., Ma, H., Shi, G., He, L., Wei, L., & Shi, Q. (2016). A review of groundwater contamination near municipal solid waste landfill sites in China. Science of the Total Environment.

  13. Johnson, R. L., Cherry, J. A., Pankow, J. F. (1989). Diffusive contaminant transport in natural clay: a field example and implications for clay-lined waste disposal sites. Environmental Science & Technology, 23 (3), 340–349

  14. Kapelewska, J., Kotowska, U., Karpińska, J., Kowalczuk, D., Arciszewska, A., & Świrydo, A. (2017). Occurrence, removal, mass loading and environmental risk assessment of emerging organic contaminants in leachates, groundwaters and wastewaters. Microchemical Journal.

  15. Kawai, M., Purwanti, I. F., Nagao, N., Slamet, A. H., & Toda, T. (2012). Seasonal variation in chemical properties and degradability by anaerobic digestion of landfill leachate at Benowo in Surabaya, Indonesia. Journal of Environmental Management.

  16. Khattabi, H., Aleya, L., & Mania, J. (2002). Changes in the quality of landfill leachates from recent and aged municipal solid waste. Waste Management & Research.

  17. Kjeldsen, P., Barlaz, M. A., Rooker, A. P., Baun, A., Ledin, A., & Christensen, T. H. (2003). Present and long-term composition of MSW landfill leachate: a review. Critical Reviews in Environmental Science and Technology, 32(4), 297–336.

    Article  Google Scholar 

  18. Koda, E., Tkaczyk, A., Lech, M., & Osinski, P. (2017). Application of electrical resistivity data sets for the evaluation of the pollution concentration level within landfill subsoil. Applied Sciences, 7, 262.

    CAS  Article  Google Scholar 

  19. Krčmar, D., Tenodi, S., Grba, N., Kerkez, D., Watson, M., Rončević, S., & Dalmacija, B. (2018). Preremedial assessment of the municipal landfill pollution impact on soil and shallow groundwater in Subotica, Serbia. Science of the Total Environment, 615(2018), 1341–1354.

    CAS  Article  Google Scholar 

  20. Leite, A. L., Paraguassú, A. B., & Rowe, R. K. (2003). Sorption of Cd, K, F and Cl on some tropical soils. Canadian Geotechnical Journal, 40(3), 629-642.

    CAS  Article  Google Scholar 

  21. Levy-Booth, D. J., Pr Escott, C. E., & Grayston, S. J. (2014). Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biology and Biochemistry.

  22. Lijklema, L. (1972). Factors affecting pH change in alkaline waste water treatment – III: a dynamic simulation. Water Research.

  23. Ling, C., & Zhang, Q. (2017). Evaluation of surface water and groundwater contamination in a MSW landfill area using hydrochemical analysis and electrical resistivity tomography: a case study in Sichuan province, Southwest China. Environmental Monitoring and Assessment.

  24. Longe, E. O., & Enekwechi, L. O. (2007). Investigation on potential groundwater impacts and influence of local hydrogeology on natural attenuation of leachate at a municipal landfill. International journal of Environmental Science and Technology.

  25. Lopes, D. D., Silva, S. M. C. P., Fernandes, F., Teixeira, R. S., Celligoi, A., & Dall’antônia, L. H. (2012). Geophysical technique and groundwater monitoring to detect leachate contamination in the surrounding area of a landfill e Londrina (PR - Brazil). Journal of Environmental Management.

  26. Mendonça, E. S., & Rowell, P. L. (1996). Mineral and organic fractions of two oxisols and their influence on effective cation - exchange capacity. Soil Science Society of America Journal.

  27. Mishra, S., & Tiwary, D. (2018). Leachate characterization and evaluation of leachate pollution potential of urban municipal landfill sites. International Journal of Environment and Waste Management.

  28. Moreira, C. A., Helene, L. P. I., Nogara, P., & Ilha, L. M. (2018). Analysis of leaks from geomembrane in a sanitary landfill through models of electrical resistivity tomography in South Brazil. Environment and Earth Science, 77(7).

  29. Mouhoun-Chouaki, S., Derridj, A., Tazdaït, D., & Salah-Tazdaït, R. (2019). A study of the impact of municipal solid waste on some soil physicochemical properties: the case of the landfill of Ain-El-Hammam Municipality, Algeria. Applied and Environmental Soil Science.

  30. Naveen, B. P., Mahapatra, D. M., Sitharam, T. G., Sivapullaiah, P. V., & Ramachandra, T. V. (2017). Physico-chemical and biological characterization of urban municipal landfill leachate. Environmental Pollution.

  31. Nguyen, T.-B., Lim, J., & Choi, H. (2011). Numerical modeling of diffusion for volatile organic compounds through composite landfill liner systems. Journal of Civil Engineering.

  32. Norton, J., Alzerreca, J., Suwa, Y., & Klotz, M. (2002). Diversity of ammonia monooxygenase operon in autotrophic ammonia oxidizing bacteria. Archives of Microbiology.

  33. Oliveira, A. C. D. G., Correa, C. Z., Prates, K. V. M. C., & Lopes, D. D. (2017). Nitrifying, denitrifying and heterotrophic biomass present in moving bed-reactor. American Journal of Environmental Sciences.

  34. Parameswari, K., & Mudgal, B. V. (2014). Geochemical investigation of groundwater contamination in Perungudi dumpsite, South India. Arabian Journal of Geosciences.

  35. Pavan, M. A., Blocj, M. F., Zempulski, H. C., Miyazawa, M., & Zocoler, D. C. (1991). Manual de análise química do solo. Paraná: Instituto Agronômico do Paraná, Londrina.

    Google Scholar 

  36. Prosser, J. I., & Nicol, G. W. (2008). Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environmental Microbiology.

  37. Przydatek, G., & Kanownik, W. (2019). Impact of small municipal solid waste landfill on groundwater. Quality. Environ Monit Assess, 191, 169.

    CAS  Article  Google Scholar 

  38. Rizzo, R. P., & Lollo, J. A. (2006). Capacidade de retenção de barreiras de proteção produzidas com solo arenoso estabilizado quimicamente. Engenharia Sanitaria e Ambiental.

  39. Samadder, S. R., Prabhakar, R., Khan, D., Kishan, D., & Chauhan, M. S. (2017). Analysis of the contaminants released from municipal solid waste landfill site: a case study. Science of the Total Environment, 580, 593–601.

    CAS  Article  Google Scholar 

  40. Shu, S., Zhu, W., Wang, S., Ng, C. W. W., Chen, Y. M., & Chiu, A. C. F. (2018). Leachate breakthrough mechanism and key pollutant indicator of municipal solid waste landfill barrier systems: centrifuge and numerical modeling approach. Science of the Total Environment, 612, 1123–1131.

    CAS  Article  Google Scholar 

  41. Spagni, A., & Marsili-Libelli, S. (2009). Nitrogen removal via nitrite in a sequencing batch reactor treating sanitary landfill leachate. Bioresource Technology.

  42. Sposito, G. (1989). The chemistry of soils. New York: Oxford University Press.

    Google Scholar 

  43. Tałałaj, I. A., Biedka, P., Walery, M. J., & Leszczyński, J. (2016). Monitoring Of leachate quality at a selected municipal landfill site in Podlasie, Poland. Journal of Ecological Engineering.

  44. Tedesco, M. J., et al. (1995). Análises de solo, plantas e outros materiais (2.Ed ed.). Porto Alegre: UFRGS 174 p.

    Google Scholar 

  45. Vahabian, M., Hassanzadeh, Y., & Marofi, S. (2019). Assessment of landfill leachate in semi-arid climate and its impact on the groundwater quality case study: Hamedan, Iran. Environmental Monitoring and Assessment, 191, 109.

    CAS  Article  Google Scholar 

  46. Wan, G. X., Han, C., Zh An, G. J., Hu An, G. Q., Den, G. H., Den, G. Y., & Zh Ong, W. (2015). Long term fertilization effects on active ammonia oxidizers in an acidic up land soil in China. Soil Biology and Biochemistry.

  47. Xie, H., Chen, Y., Thomas, H. R., Sedighi, M., Masum, S. A., & Ran, Q. (2016). Contaminant transport in the sub-surface soil of an uncontrolled landfill site in China: site investigation and two-dimensional numerical analysis. Environmental Science and Pollution Research, 23, 2566–2575.

    CAS  Article  Google Scholar 

  48. Yin, C., Fan, F. L., Son, G. A. L., Fan, X. P., Din, G. H., Ran, W., Qiu, H. Z., & Lian, G. Y. C. (2017). The response patterns of community traits of N2O emission-related functional guilds to temperature across different arable soils under inorganic fertilization. Soil Biology and Biochemistry.

  49. Yong, R. N., Mohamed, A. M. O., & Warkentin, B. P. (1992). Principles of contaminant tranport in soils (p. 327). Amsterdam: Elsevier Science Publishers B. V.

    Google Scholar 

Download references


The authors would like to thank the Coordination of Improvement of Higher Level Personnel (CAPES) for the scholarship.

Author information



Corresponding author

Correspondence to Flávia Gonçalves.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, F., Correa, C.Z., Lopes, D.D. et al. Monitoring of the process of waste landfill leachate diffusion in clay and sandy soil. Environ Monit Assess 191, 577 (2019).

Download citation


  • Soil contamination
  • Temporal analysis
  • Principal component analysis (PCA)
  • Landfill waterproofing barrier
  • Leak detection techniques