Technical approaches to evaluate the surfactant-enhanced biodegradation of biodiesel and vegetable oils

Abstract

This research compared the effects of biosurfactant on the biodegradation of biodiesel and vegetable oils while validating two conceptually diverging methodologies. The two experimental setups were successfully modeled towards the effects of biosurfactants during biodegradation. We established the equivalence of both methodologies from the data output. As expected, the biosurfactants caused an increased oil uptake, thus increasing biodegradation performance. Cooking oils were favored by the microbial consortium as a carbon source when compared with biodiesel fuel, especially after use in food preparation. However, we found that biodiesel substrate standout with the highest biodegradation rates. Our results might indicate that a rapid metabolic change from the original compound initially favored biodiesels during the assimilation of organic carbon for a set specialized microbial inoculum. The data output was successfully combined with mathematical models and statistical tools to describe and predict the actual environmental behavior of biodiesel and vegetable oils. The models confirmed and predicted the biodegradation effectiveness with biosurfactants and estimated the required timeframe to achieve satisfactory contaminant removal.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aluyor, E. O., Obahiagbon, K. O., & Ori-Jesu, M. (2009). Biodegradation of vegetable oils: a review. Scientific Research and Essays, 4, 543–548.

    Google Scholar 

  2. Amund, O. O., & Adebiyi, A. G. (1991). Effect of viscosity on the biodegradability of automotive lubricating oils. Tribology International, 24, 235–237.

    CAS  Google Scholar 

  3. Bartha, R., & Pramer, D. (1965). Features of flask and method for measurement of the persistence and biological effects of pesticides in soil. Soil Science, 68, 100–104.

    Google Scholar 

  4. Behrends, V., Ebbels, T. M. D., Williams, H. D., & Bundy, J. G. (2009). Time-resolved metabolic footprinting for nonlinear modeling of bacterial substrate utilization. Applied and Environmental Microbiology, 75, 2453–2463.

    CAS  Google Scholar 

  5. Bertrand, J. C., Bonin, P., Goutx, M., Gauthier, M., & Mille, G. (1994). The potential application of biosurfactants in combating hydrocarbon pollution in marine environment. Research in Microbiology, 145, 53–56.

    CAS  Google Scholar 

  6. Borden, R. C., & Bedient, P. B. (1986). Transport of dissolved hydrocarbons influenced by oxygen-limited biodegradation. Water Resources Research, 22, 1973–1982.

    CAS  Google Scholar 

  7. Bustamante, M., Durán, N., & Diez, M. C. (2012). Biosurfactants are useful tools for the bioremediation of contaminated soil: a review. Journal of Soil Science and Plant Nutrition, 12, 667–687.

    Google Scholar 

  8. Calvo, C., Manzanera, M., Silva-Castro, G. A., Uad, I., & González-López, J. (2008). Application of bioemulsifiers in soil oil bioremediation processes. Future prospects. Science of the Total Environment, 407, 3634–3640.

    Google Scholar 

  9. Chen, H., & Juang, R. (2008). Recovery and separation of surfactin from pretreated fermentation broths by physical and chemical extraction. Biochemical Engineering Journal, 28, 39–46.

    Google Scholar 

  10. Chhatre, S., Purohit, H., Shanker, R., & Khanna, P. (1996). Bacterial consortia for crude oil spill remediation. Water Science and Technology, 34, 187–194.

    CAS  Google Scholar 

  11. Colla, T. S., Andreazza, R., Bücker, F., Souza, M. M., Tramontini, L., Prado, G. R., Frazzon, A. P. G., Camargo, F. A. O., & Bento, F. M. (2014). Bioremediation assessment of diesel–biodiesel-contaminated soil using an alternative bioaugmentation strategy. Environemental Science and Pollution Research, 21, 2592–2602.

    CAS  Google Scholar 

  12. Das, K., & Mukherjee, A. K. (2007). Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresource Technology, 98, 1339–1345.

    CAS  Google Scholar 

  13. Das, P., Mukherjee, A. K., & Sen, R. (2008). Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin. Chemosphere, 72, 1229–1234.

    CAS  Google Scholar 

  14. Dehghan-Noudeh, G., Housaindokht, M., & Bazzaz, B. S. F. (2005). Isolation, characterization, and investigation of surface and hemolytic activities of a lipopeptide biosurfactant produced by Bacillus subtilis ATCC 6633. Journal of Microbiology, 43, 272–276.

    Google Scholar 

  15. DeMello, J. A., Carmichael, C. A., Peacock, E. E., Nelson, R. K., Arey, J. S., & Reddy, C. M. (2007). Biodegradation and environmental behavior of biodiesel mixtures in the sea: an initial study. Marine Pollution Bulletin, 54, 894–904.

    CAS  Google Scholar 

  16. Desai, J. D., & Banat, I. M. (1997). Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 61, 47–64.

    CAS  Google Scholar 

  17. Fennema, O. R. (1985). Food Chemistry. New York: Marcel Dekker Inc..

    Google Scholar 

  18. Georgiou, G., Lin, S., & Sharma, M. M. (1992). Surface active compounds from microorganisms. Biotechnology Advances, 10, 60–65.

    CAS  Google Scholar 

  19. Geris, R., Santos, N.A.C., Amaral, B.A., Maia, I.S., Castro, V.D., Carvalho, J.R.M. (2007). Biodiesel from soybean oil-experimental procedure of transesterification for organic chemistry laboratories. Quím. Nova, 30, 1369–1373.

  20. Gong, G., Zheng, Z., Chen, H., Yuan, C., Wang, P., Yao, L., & Yu, Z. (2009). Enhanced production of surfactin by Bacillus subtilis e8 mutant obtained by ion beam implantation. Food Technology and Biotechnology, 47, 23–31.

    Google Scholar 

  21. Graves, A., Lang, C., & Leavitt, M. (1991). Respirometric analysis of the biodegradation of organic contaminants in soil and water. Applied Biochemistry and Biotechnology, 28, 813–826.

    Google Scholar 

  22. Kornmüller, A., & Wiesmann, U. (1999). Continuous ozonation ofpolycyclic aromatic hydrocarbons in oil/water-emulsions and biodegradation of oxidation products. Water Science and Technology, 40, 107–114.

    Google Scholar 

  23. Kosaric, N. (2001). Biosurfactants and their application for soil bioremediation. Food Technology and Biotechnology, 39, 295–304.

    CAS  Google Scholar 

  24. Lopes, P. R. M., & Bidoia, E. D. (2009). Evaluation of the biodegradation of different types of lubricant oil in liquid medium. Brazilian Archives of Biology and Technology, 52, 1285–1290.

    CAS  Google Scholar 

  25. Makareviciene, V., & Janulis, P. (2003). Environmental effect of rapeseed oil ethyl ester. Renewable Energy, 28, 2395–2403.

    CAS  Google Scholar 

  26. Mattson, R. V., Arthur, J. W., & Walbridge, C. T. (1976). Acute toxicity of selected organic compounds to fathead. USA: Environmental Research Lab – EPA.

    Google Scholar 

  27. Millioli, V. S., & Sobral, E. F. (2007). Biorremediação de solo contaminado com óleo cru: avaliação da adição de ramnolipídio quanto à toxicidade e a eficiência de biodegradação. Campinas: PDPETRO.

    Google Scholar 

  28. Moliterni, E., Jiménez-Tusset, R. G., Rayo, M. V., Rodriguez, L., Fernández, F. J., & Villaseñor, J. (2012). Kinetics of biodegradation of diesel fuel by enriched microbial consortia from polluted soils. International journal of Environmental Science and Technology, 9, 749–758.

    CAS  Google Scholar 

  29. Montagnolli, R. N., Lopes, P. R. M., & Bidoia, E. D. (2009). Applied models to biodegradation kinetics of lubricant and vegetable oils in wastewater. International Biodeterioration & Biodegradation, 63, 297–305.

    CAS  Google Scholar 

  30. Montagnolli, R. N., Lopes, P. R. M., & Bidoia, E. D. (2014). Assessing Bacillus subtilis biosurfactant effects on the biodegradation of petroleum products. Environmental Monitoring and Assessment, 187, 4116–4121.

    Google Scholar 

  31. Montagnolli, R. N., Lopes, P. R. M., & Bidoia, E. D. (2015). Screening the toxicity and biodegradability of petroleum hydrocarbons by a rapid colorimetric method. Archives of Environmental Contamination and Toxicology, 68, 342–353.

    CAS  Google Scholar 

  32. Mulligan, C. (2005). Environmental applications for biosurfactants. Environmental Pollution, 133, 183–198.

    CAS  Google Scholar 

  33. Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2010). Surfactant-enhanced remediation of contaminated soil: a review. Engineering Geology, 60, 371–380.

    Google Scholar 

  34. Nitschke, M., Ferraz, C., & Pastore, G. M. (2004). Selection of microorganisms for biosurfactant production using agroindustrial wastes. Brazilian Journal of Microbiology, 35, 81–85.

    Google Scholar 

  35. Norman, R. S., Frontera-Suau, R., & Morris, P. J. (2002). Variability in Pseudomonas aeruginosa lipopolysaccharide expression during crude oil degradation. Applied and Environmental Microbiology, 68, 5096–5103.

    CAS  Google Scholar 

  36. Pala, D. M., Carvalho, D. D., Pinto, J. C., & Sant’anna, G. L. (2006). A suitable model to describe bioremediation of a petroleum-contaminated soil. International Biodeterioration & Biodegradation, 58, 254–260.

    CAS  Google Scholar 

  37. Pasco, N., Baronian, K. H., Jeffries, C., & Hay, J. (2000). Biochemical mediator demand—a novel rapid alternative for measuring biochemical oxygen demand. Journal of Microbiology and Biotechnology, 53, 613–618.

    CAS  Google Scholar 

  38. Penet, S., Marchal, R., Sghir, A., & Monot, F. (2004). Biodegradation of hydrocarbon cuts used for diesel oil formulation. Applied Microbiology and Biotechnology, 66, 40–47.

    CAS  Google Scholar 

  39. Pinto, A.C., Guarieiro, L.L.N., Rezende, M.J.C., Ribeiro, N.M., Torres, E.A., Lopes, W.A., Pereira, P.A.P., Andrade, J.B. (2005). Biodiesel: an overview. Journal of the Brazilian Chemical Society, 16, 1313–1330.

  40. Queiroga, C. L., Nascimento, L. R., & Serra, G. E. (2003). Evaulation of paraffins biodegradation and biosurfactant production by Bacillus subtilis in the presence of crude oil. Brazilian Journal of Microbiology, 34, 321–324.

    CAS  Google Scholar 

  41. Rico, J. A. P., & Sauer, I. L. (2015). A review of Brazilian biodiesel experiences. Renewable and Sustainable Energy Reviews, 45, 513–529.

    Google Scholar 

  42. Schmidt, S. K., Simkins, S., & Alexander, M. (1985). Models for the kinetics of biodegradation of organic compounds not supporting growth. Applied and Environmental Microbiology, 50, 323–331.

    CAS  Google Scholar 

  43. Scrimgeour, C. (2005). Bailey’s industrial oil and fat products. New Jersey: Wiley.

    Google Scholar 

  44. Singh, A., Olsen, S. I., & Nigam, P. S. (2011). A viable technology to generate third-generation biofuel. Journal of Chemical Technology and Biotechnology, 86, 1349–1353.

    CAS  Google Scholar 

  45. Srinivasan, P., & Mercer, J. W. (1988). Simulation of biodegradation and sorption processes in ground-water. Ground Water, 26, 475–487.

    CAS  Google Scholar 

  46. Sutton, N. B., Gaans, P. V., Langenhoff, A. A. M., Maphosa, F., Smidt, H., Grotenhuis, T., & Rijnaarts, H. H. M. (2013). Biodegradation of aged diesel in diverse soil matrixes: impact of environmental conditions and bioavailability on microbial remediation capacity. Biodegradation, 24, 487–498.

    CAS  Google Scholar 

  47. Taylor, L. T., & Jones, D. M. (2001). Bioremediation of coal tar PAH in soils using biodiesel. Chemosphere, 44, 1131–1136.

    CAS  Google Scholar 

  48. Venkateswaran, K., & Harayama, S. (1995). Sequential enrichment of microbial populations exhibiting enhanced biodegradation of crude oil. Canadian Journal of Microbiology, 41, 767–775.

    CAS  Google Scholar 

  49. Wake, H. (2005). Oil refineries: a review of their ecological impacts on the aquatic environment. Estuarine, Coastal and Shelf Science, 62, 131–140.

    CAS  Google Scholar 

  50. Wilkinson, S., Klar, J., & Applegarth, S. P. (2006). Optimizing biofuel cell performance using a targeted mixed mediator combination. Electroanal, 18, 2001–2007.

    CAS  Google Scholar 

  51. Yoshida, N., Hoashi, J., Morita, T., McNiven, S. J., Nakamura, H., & Karube, I. (2001). Improvement of a mediator-type biochemical oxygen demand sensor for on-site measurement. Journal of Biotechnology, 88, 269–275.

    CAS  Google Scholar 

  52. Zhengkai, L., & Wrenn, B. A. (2008). Effects of ferric hydroxide on the anaerobic biodegradation kinetics and toxicity of vegetable oil in freshwater sediments. Water Research, 38, 3859–3868.

    Google Scholar 

Download references

Funding

Our research group gratefully acknowledges funding from the PRH-ANP/MCT (Programa de Formação de Recursos Humanos em Geologia do Petróleo e Ciências Ambientais Aplicadas ao Setor de Petróleo e Gás), grant number 6000.0067867.11.4; and the support from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), FUNDUNESP (Fundação para o Desenvolvimento da UNESP), and UNESP (Universidade Estadual Paulista “Julio de Mesquita Filho”).

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Dilarri.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PPTX 504 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Montagnolli, R.N., Cruz, J.M., Moraes, J.R. et al. Technical approaches to evaluate the surfactant-enhanced biodegradation of biodiesel and vegetable oils. Environ Monit Assess 191, 565 (2019). https://doi.org/10.1007/s10661-019-7635-5

Download citation

Keywords

  • Biodegradation kinetics
  • Bioremediation
  • Colorimetric
  • Individual moving range chart
  • Mathematical modeling
  • Respirometric