Skip to main content

An important role of decomposing wood for soil environment with a reference to communities of springtails (Collembola)

Abstract

Present study focused on how the presence of decaying wood affects soil environment including its biota. The study was carried out in the montane spruce forest, disturbed by wind and bark beetles in Trojmezná Mt. of the Bohemian Forest in the Czech Republic. According to the results, presence of decomposing wood influenced soil environment in terms of its chemical properties by increasing soil pH and total carbon content significantly in soil below the trunks compared with soil from further distance. Decomposing wood did not affect total density and species richness of Collembola, but it had a significant influence on species composition and some species were more abundant in soil right below the trunks whereas others preferred soil environment further from them. Finally, significant relations, both positive and negative, were recorded between some Collembola species and ammonium. Thus, this substance might play a role of a volatile attractant in soil environment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Berg, M. P., Stoffer, M., & van den Heuvel, H. H. (2004). Feeding guilds in Collembola based on digestive enzymes. Pedobiologia, 48, 589–601.

    Article  Google Scholar 

  • Boddy, L., & Jones, T. H. (2008). Interactions between Basidiomycota and invertebrates. In L. Boddy, J. C. Frankland, & P. van West (Eds.), Ecology of saprotrophic Basidiomycetes (pp. 153–177). Amsterdam: Elsevier.

    Google Scholar 

  • Bretfeld, G. (1999). Symphypleona. In W. Dunger (Ed.), Synopses on Palaearctic Collembola (Vol. 2). Görlitz: Abhandlungen und Berichte des Naturkundemuseums.

    Google Scholar 

  • Caravaca, F., & Ruess, L. (2014). Arbuscular mycorrhizal fungi and their associated microbial community modulated by Collembola grazers in host plant free substrate. Soil Biology & Biochemistry, 69, 25–33.

    CAS  Article  Google Scholar 

  • Chahartaghi, M., Langel, R. S., Scheu, S., & Ruess, L. (2005). Feeding guilds in Collembola based on nitrogen stable isotope ratios. Soil Biology and Biochemistry, 37, 1718–1725.

    CAS  Article  Google Scholar 

  • Chen, B., Snider, R. J., & Snider, R. M. (1995). Food preference and effects of food type on the life history of some soil Collembola. Pedobiologia, 39, 496–505.

    Google Scholar 

  • Crossley, D. A., Jr., & Blair, J. M. (1991). A high-efficiency, “low-technology” Tullgren-type extractor for soil microarthropods. Agriculture, Ecosystems and Environment, 34, 187–192.

    Article  Google Scholar 

  • Crowther, T. W., & A’Bear, A. D. (2012). Impacts of grazing soil fauna on decomposer fungi are species-specific and density-dependent. Fungal Ecology, 5, 277–281.

    Article  Google Scholar 

  • Crowther, T. W., Boddy, L., & Hefin, J. T. (2011a). Species-specific effects of soil fauna on fungal foraging and decomposition. Oecologia, 167, 535–545.

    Article  Google Scholar 

  • Crowther, T. W., Hefin, J. T., & Boddy, L. (2011b). Species-specific effects of grazing invertebrates on mycelial emergence and growth from woody resources into soil. Fungal Ecology, 4, 333–341.

    Article  Google Scholar 

  • Crowther, T. W., Boddy, L., & Hefin, J. T. (2012). Functional and ecological consequences of saprotrophic fungus–grazer interactions. The ISME Journal, 6, 1992–2001.

    CAS  Article  Google Scholar 

  • Domene, X., Hanley, K., Enders, A., & Lehmann, J. (2015). Short-term mesofauna responses to soil additions of corn stover biochar and the role of microbial biomass. Applied Soil Ecology, 89, 10–17.

    Article  Google Scholar 

  • Dunger, W., & Schlitt, B. (2011). Tullbergiidae. In W. Dunger (Ed.), Synopses on Palaearctic Collembola (Vol. 6/1). Görlitz: Abhandlungen und Berichte des Naturkundemuseums.

    Google Scholar 

  • Fiera, C. (2014a). Application of stable isotopes and lipid analysis to understand trophic interactions in springtails. North-Western Journal of Zoology, 10, 227–235.

    Google Scholar 

  • Fiera, C. (2014b). Detection of food in the gut content of Heteromurus nitidus (Hexapoda: Collembola) by DNA/PCR-based molecular analysis. North-Western Journal of Zoology, 10, 67–73.

    Google Scholar 

  • Fjellberg A. (1998). The Collembola of Fennoscandia and Denmark, Part I: Poduromorpha. In: Kristensen N.P., Michelsen V. (Eds), Fauna entomologica Scandinavica, vol. 35, Brill.

  • Gutiérrez-López, M., Salmon, S., & Trigo, D. (2011). Movement response of Collembola to the excreta of two earthworm species: importance of ammonium content and nitrogen forms. Soil Biology & Biochemistry, 43, 55–62.

    Article  Google Scholar 

  • Harmon, M. E., Franklin, J. F., Swanson, F. J., Sollins, P., Gregory, S. V., Lattin, J. D., Anderson, N. H., Cline, S. P., Aumen, N. G., Sedell, J. R., Lienkaemper, G. W., Cromack, K., Jr., & Cummins, K. W. (1986). Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research, 15, 133–302.

    Article  Google Scholar 

  • Heděnec, P., Radochová, P., Nováková, A., Kaneda, S., & Frouz, J. (2013). Grazing preference and utilization of soil fungi by Folsomia candida (Isotomidae:Collembola). European Journal of Soil Biology, 55, 66–70.

    Article  Google Scholar 

  • Hofmeister, J., Oulehle, F., Krám, P., & Hruška, J. (2008). Loss of nutrients due to litter raking compared to the effect of acidic deposition in two spruce stands, Czech Republic. Biogeochemistry, 88, 139–151.

    Article  Google Scholar 

  • Hopkin, S. P. (1997). Biology of the springtails. Oxford: Oxford University Press.

    Google Scholar 

  • Kaňa, J., Tahovská, K., Kopáček, J., & Šantrůčková, H. (2015). Excess of organic carbon in mountain spruce forest soils after bark beetle outbreak altered microbial N transformations and mitigated N-saturation. PLoS One, 10(7), e0134165. https://doi.org/10.1371/journal.pone.0134165.

    CAS  Article  Google Scholar 

  • Kaňa, J., Kopáček, J., Tahovská, K., & Šantrůčková, H. (2019). Tree dieback and related changes in nitrogen dynamics modify the concentrations and proportions of cations on soil sorption complex. Ecological Indicators, 97, 319–328.

    Article  Google Scholar 

  • Kanters, C., Anderson, I. C., & Johnson, D. (2015). Chewing up the wood-wide web: selective grazing on ectomycorrhizal fungi by Collembola. Forests, 6, 2560–2570.

    Article  Google Scholar 

  • Kopáček, J., & Hejzlar, J. (1993). Semi-micro determination of total phosphorus in fresh waters with perchloric acid digestion. International Journal of Environmental Analytical Chemistry, 53, 173–183.

    Article  Google Scholar 

  • Kopáček, J., Kaňa, J., Šantrůčková, H., Picek, T., & Stuchlík, E. (2004). Chemical and biochemical characteristics of alpine soils in the Tatra Mountains and their correlation with lake water quality. Water, Air, & Soil Pollution, 153, 307–327.

    Article  Google Scholar 

  • Kopáček, J., Fluksová, H., Hejzlar, J., Kaňa, J., Porcal, P., & Turek, J. (2017). Changes in surface water chemistry caused by natural forest dieback in an unmanaged mountain catchment. Science of the Total Environment, 584-585, 971–981.

    Article  Google Scholar 

  • Marshall, V. G., Setälä, H., & Trofymow, J. A. (1998). Collembolan succession and stump decomposition in Douglas-fir. In J. A. Trofymow & A. MacKinnon (Eds.), Proceedings of a workshop on Structure, Process, and Diversity in Successional Forests of Coastal British Columbia, February 17-19, 1998 (Vol. 72, pp. 84–85). Victoria, British Columbia: Northwest Science.

    Google Scholar 

  • Martínez, Á. T., Speranza, M., Ruiz-Dueñas, F. J., Ferreira, P., Camarero, S., Guillén, F., Martínez, M. J., Gutiérrez, A., & del Río, J. C. (2005). Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiology, 8, 195–204.

    Google Scholar 

  • Murphy, J., & Riley, J. P. (1962). A modified single–solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36.

    CAS  Article  Google Scholar 

  • Neher, D. A., Weicht, T. R., & Barberchesck, M. E. (2012). Linking invertebrate communities to decomposition rate and nitrogen availability in pine forest soils. Applied Soil Ecology, 54, 14–23.

    Article  Google Scholar 

  • Palviainen, M., & Finér, L. (2015). Decomposition and nutrient release from Norway spruce coarse roots and stumps – a 40-year chronosequence study. Forest Ecology and Management, 385, 1–11.

    Article  Google Scholar 

  • Pomorski, R. J. (1998). Onychiurinae of Poland (Collembola: Onychiuridae). Wrocław: BS.

    Google Scholar 

  • Ponge, J. F. (2000). Vertical distribution of Collembola (Hexapoda) and their food resources in organic horizons of beech forests. Biology and Fertility of Soils, 32, 508–522.

    Article  Google Scholar 

  • Potapov, M. B. (2001). Isotomidae. In W. Dunger (Ed.), Synopses on Palaearctic Collembola (Vol. 3). Görlitz: Abhandlungen und Berichte des Naturkundemuseums.

    Google Scholar 

  • Pouska, V., Lepš, J., Svoboda, M., & Lepšová, A. (2011). How do log characteristics influence the occurrence of wood fungi in a mountain spruce forest? Fungal Ecology, 4, 201–209.

    Article  Google Scholar 

  • Pouska, V., Macek, P., & Zíbarová, L. (2016). The relation of fungal communities to wood microclimate in a mountain spruce forest. Fungal Ecology, 21, 1–9.

    Article  Google Scholar 

  • Rotheray, T. D., Boddy, L., & Hefin, J. T. (2009). Collembola foraging responses to interacting fungi. Ecological Entomology, 34, 125–132.

    Article  Google Scholar 

  • Salmon, S., & Ponge, J.-F. (2001). Earthworm excreta attract soil springtails: laboratory experiments on Heteromurus nitidus (Collembola: Entomobryidae). Soil Biology and Biochemistry, 33, 1959–1969.

    CAS  Article  Google Scholar 

  • Scheu, S., & Simmerling, F. (2004). Growth and reproduction of fungal feeding Collembola as affected by fungal species, melanin and mixed diets. Oecologia, 139, 347–353.

    Article  Google Scholar 

  • Setälä, H., & Marshall, V. G. (1994). Stumps as a habitat for Collembola during succession from clear-cuts to oldgrowth Douglas-fir forests. Pedobiologia, 38, 307–326.

    Google Scholar 

  • Setälä, H., Marshall, V. G., & Trofymow, J. A. (1994). Influence of micro- and macro-habitat factors on collembolan communities in Douglas-fir stumps during forest succession. Applied Soil Ecology, 2, 227–242.

    Article  Google Scholar 

  • Shorohova, E., & Kapitsa, E. (2016). The decomposition rate of non-stem components of coarse woody debris (CWD) in European boreal forests mainly depends on site moisture and tree species. European Journal of Forest Research, 135, 593–606.

    Article  Google Scholar 

  • Siddiky, M. R. K., Schaller, J., Caruso, T., & Rillig, M. C. (2012). Arbuscular mycorrhizal fungi and collembola non-additively increase soil aggregation. Soil Biology & Biochemistry, 47, 93–99.

    CAS  Article  Google Scholar 

  • Stokland, J. N., Siitonen, J., & Jonsson, B. G. (2012). Biodiversity in dead wood. New York: Cambridge University Press.

    Book  Google Scholar 

  • Svoboda, M. (2003a). Biological activity, nitrogen dynamics, and chemical characteristics of forest soils in the Šumava National Park. Journal of Forest Science, 49, 302–312.

    CAS  Article  Google Scholar 

  • Svoboda, M. (2003b). Tree layer disintegration and its impact on understory vegetation and humus forms state in the Šumava National Park. Silva Gabreta, 9, 201–216.

    Google Scholar 

  • Svoboda, M., & Pouska, V. (2008). Structure of a Central-European mountain spruce old-growth forest with respect to historical development. Forest Ecology and Management, 255, 2177–2188.

    Article  Google Scholar 

  • Svoboda, M., Janda, P., Nagel, T. A., Fraver, S., Rejzek, J., & Bače, R. (2012). Disturbance history of an old-growth sub-alpine Picea abies stand in the Bohemian Forest, Czech Republic. Journal of Vegetation Science, 23, 86–97.

    Article  Google Scholar 

  • ter Braak, C. J. F., & Šmilauer, P. (2012). Canoco reference manual and user’s guide: software for ordination, version 5.0. Ithaca: Microcomputer Power.

    Google Scholar 

  • Thibaud, J.-M., Schulz, H.-J., & da Gama Assalino, M. M. (2004). Hypogastruridae. In W. Dunger (Ed.), Synopses on Palaearctic Collembola (Vol. 4). Görlitz: Abhandlungen und Berichte des Naturkundemuseums.

    Google Scholar 

  • Thomas, G. W. (1982). Exchangeable cations. In A. L. Page et al. (Eds.), Methods of soil analysis, Part 2 (2nd ed.). Madison, Wisconsin: ASA and SSSA.

    Google Scholar 

  • TIBCO Software Inc. (2017). Statistica (data analysis software system), version 13. http://statistica.io.

  • Tordoff, G. M., Boddy, L., & Hefin, J. T. (2008). Species-specific impacts of collembola grazing on fungal foraging ecology. Soil Biology & Biochemistry, 40, 434–442.

    CAS  Article  Google Scholar 

  • Wicklow, D. T., & Söderstrom, B. E. (Eds.). (1997). The Mycota IV, Environmental and microbial relationships. Berlin: Springer.

    Google Scholar 

  • Yelle, D. J., Wei, D., Ralph, J., & Hammel, K. E. (2011). Multidimensional NMR analysis reveals truncated lignin structures in wood decayed by the brown rot basidiomycete Postia placenta. Environmental Microbiology, 13, 1091–1100.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Daniel Vaněk for his technical support.

Funding

This study was supported by the Czech Science Foundation (projects P 504-17-15229S and 13-23647P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Čuchta.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 3 List of Collembola species and their mean density [ind.m−2] at sites under study in 2013–2015

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Čuchta, P., Kaňa, J. & Pouska, V. An important role of decomposing wood for soil environment with a reference to communities of springtails (Collembola). Environ Monit Assess 191, 222 (2019). https://doi.org/10.1007/s10661-019-7363-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7363-x

Keywords

  • Decomposing wood
  • Decay
  • Saprotrophic fungi
  • Ammonium content
  • Community data
  • Collembola