Skip to main content

Advertisement

Log in

Greenhouse gas emissions and energy exchange in wet and dry season rice: eddy covariance-based approach

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Lowland tropical rice-rice system has a unique micrometrological characteristic that affects both energy component and net ecosystem energy. Periodic and seasonal variations of methane (CH4), carbon dioxide (CO2), and energy exchange from irrigated lowland rice-rice ecosystem were studied using open-path eddy covariance (EC) system during the dry (DS) and wet (WS) seasons in 2015. Concurrently, the manual chamber method was employed in nitrous oxide (N2O) measurement efflux. Cumulative net ecosystem carbon exchange (NEE) was observed highest (− 232.55 g C m−2) during the WS and lowest (− 14.81 g C m−2) during wet fallow (WF). Similarly, the cumulative net ecosystem methane exchange (NEME) was found highest (13,456.5 mg CH4 m−2) during the WS and lowest (2014.3 mg CH4 m−2) during the WF. Surface energy fluxes, i.e., sensible (Hs) and latent heat (LE) fluxes, showed a similar trend. With the advancement of time, the ratio of ecosystem respiration (Re) and gross primary production (GPP) increased. The cumulative global warming potential (GWP) for the two cropping seasons including two fallows was 13,224.1 kg CO2 equivalent ha−1. The GWP and NEME showed a similar trend as soil enzymes and labile carbon pools in both seasons (except GWP at the harvesting stage in the wet season). The mean NEE exhibited a more negative value with decrease in labile pools from panicle initiation to harvesting stage in the WS. Soil labile C and soil enzymes can be used as an indicator of NEE, NEME, and GWP in lowland rice ecology.

Schematic presentation of GHG emission and energy exchange in lowland rice

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adam, G., & Duncan, H. (2001). Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biology and Biochemistry, 33, 943–951.

    Article  CAS  Google Scholar 

  • Alberto, M. C. R., Wassmann, R., Hirano, T., Miyata, A., Kumar, A., Padre, & Amante, M. (2009). CO2/heat fluxes in rice fields: comparative assessment of flooded and non-flooded fields in the Philippines. Agricultural and Forest Meteorology, 149, 1737–1750.

    Article  Google Scholar 

  • Alberto, M. C. R., Wassmann, R., Hirano, T., Miyata, A., Hatano, R., Kumar, A., Padre, A., & Amante, M. (2011). Comparisons of energy balance and evapotranspiration between flooded and aerobic rice fields in the Philippines. Agricultural Water Management, 98, 1417–1430.

    Article  Google Scholar 

  • Alberto, M. C., Wassmann, R., Buresh, R. J., Quilty, J. R., Correa, T. Q., Sandro, J. M., & Centeno, C. A. (2014). Measuring methane flux from irrigated rice fields by eddy covariance method using open-path gas analyzer. Field Crops Research, 160, 12–21. https://doi.org/10.1016/j.fcr.2014.02.008.

    Article  Google Scholar 

  • Aubinet, M., Grelle, A., Ibrom, A., Rannik, Ü., Moncrieff, J., Foken, T., Kowalski, A. S., Martin, P. H., Berbigier, P., Bernhofer, C., Clement, R., Elbers, J., Granier, A., Grün-wald, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R., & Vesala, T. (2000). Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Advances in Ecological Research, 30, 113–175.

    Article  CAS  Google Scholar 

  • Baldocchi, D. D. (2003). Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology, 9(4), 479–492.

    Article  Google Scholar 

  • Bhatia, A., Pathak, H., Jain, N., Singh, P. K., & Singh, A. K. (2005). Global warming potential of manure amended soils under rice–wheat system in the Indo-Gangetic plains. Atmospheric Environment, 39(37), 6976–6984.

    Article  CAS  Google Scholar 

  • Bhatia, A., Ghosh, A., Kumar, V., Tomer, R., Singh, S. D., & Pathak, H. (2011). Effect of elevated tropospheric ozone on methane and nitrous oxide emission from rice soil in north India. Agriculture, Ecosystems & Environment, 144(1), 21–28.

    Article  CAS  Google Scholar 

  • Bhattacharyya, P., Roy, K. S., Neogi, S., Adhya, T. K., Rao, K. S., & Manna, M. C. (2012). Effects of rice straw and nitrogen fertilization on greenhouse gas emissions and carbon storage in tropical flooded soil planted with rice. Soil and Tillage Research, 124, 119–130.

    Article  Google Scholar 

  • Bhattacharyya, P., Nayak, A. K., Mohanty, S., Tripathi, R., Shahid, M., Kumar, A., & Dash, P. K. (2013a). Greenhouse gas emission in relation to labile soil C, N pools and functional microbial diversity as influenced by 39 years long-term fertilizer management in tropical rice. Soil and Tillage Research, 129, 93–105.

    Article  Google Scholar 

  • Bhattacharyya, P., Neogi, S., Roy, K. S., & Rao, K. S. (2013b). Gross primary production, ecosystem respiration and net ecosystem exchange in Asian rice paddy: an eddy covariance-based approach. Current Science, 104, 67–75.

    CAS  Google Scholar 

  • Bhattacharyya, P., Neogi, S., Roy, K. S., Dash, P. K., Nayak, A. K., & Mohapatra, T. (2014). Tropical low land rice ecosystem is a net carbon sink. Agriculture, Ecosystems & Environment, 189, 127–135.

    Article  Google Scholar 

  • Campbell Scientific, Inc. (2009). Open path eddy covariance system operator’s manual (instruction manual). Canada: Campbell Scientific Corporation.

    Google Scholar 

  • Casida Jr., L. E., Klein, D. A., & Santoro, T. (1964). Soil dehydrogenase activity. Soil Science, 98(6), 371–376.

    Article  CAS  Google Scholar 

  • Chapin, F. S., Woodwell, G. M., Randerson, J. T., Rastetter, E. B., Lovett, G. M., Baldocchi, D. D., et al. (2006). Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems, 9(7), 1041–1050. https://doi.org/10.1007/s10021-005-0105-7.

    Article  CAS  Google Scholar 

  • Chatterjee, D., Mohanty, S., Guru, P. K., Swain, C. K., Tripathi, R., Shahid, M., Kumar, U., Kumar, A., Bhattacharyya, P., Gautam, P., & Lal, B. (2018). Comparative assessment of urea briquette applicators on greenhouse gas emission, nitrogen loss and soil enzymatic activities in tropical lowland rice. Agriculture, Ecosystems & Environment, 252, 178–190.

    Article  CAS  Google Scholar 

  • Crafts-Brandner, S. J., & Salvucci, M. E. (2000). Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proceedings of the National Academy of Sciences, 97(24), 13430–13435. https://doi.org/10.1073/pnas.230451497.

    Article  CAS  Google Scholar 

  • Cruz, F. T., Narisma, G. T., Villafuerte, M. Q., Chua, K. C., & Olaguera, L. M. (2013). A climatological analysis of the southwest monsoon rainfall in the Philippines. Atmospheric Research, 122, 609–616. https://doi.org/10.1016/j.atmosres.2012.06.010.

    Article  Google Scholar 

  • Das, S. K., & Varma, A. (2011). Role of enzymes in maintaining soil health. In G. Shukla & A. Varma (Eds.), Soil enzymology, soil biology 22. Berlin: Springer.

    Google Scholar 

  • Das, S., Ghosh, A., & Adhya, T. K. (2011). Nitrous oxide and methane emission from a flooded rice field as influenced by separate and combined application of herbicides bensulfuron methyl and pretilachlor. Chemosphere, 84(1), 54–62. https://doi.org/10.1016/j.chemosphere.2011.02.055.

    Article  CAS  Google Scholar 

  • Datta, A., Nayak, D. R., Sinhababu, D. P., & Adhya, T. K. (2009). Methane and nitrous oxide emissions from an integrated rainfed rice–fish farming system of eastern India. Agriculture, Ecosystems & Environment, 129(1), 228–237. https://doi.org/10.1016/j.agee.2008.09.003.

    Article  CAS  Google Scholar 

  • Detto, M., Verfaillie, J., Anderson, F., Xu, L., & Baldocchi, D. (2011). Comparing laser-based open- and closed-path gas analyzers to measure methane fluxes using the eddy covariance method. Agricultural and Forest Meteorology, 151(10), 1312–1324.

    Article  Google Scholar 

  • Dlugokencky, E. J., Nisbet, E. G., Fisher, R., & Lowry, D. (2011). Global atmospheric methane: budget, changes and dangers. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 369(1943), 2058–2072. https://doi.org/10.1098/rsta.2010.0341.

    Article  CAS  Google Scholar 

  • Eivazi, F., & Tabatabai, M. A. (1988). Glucosidases and galactosidases in soils. Soil Biology and Biochemistry, 20(5), 601–606 https://doi.org/10.1016/0038-0717(88)90141-1.

  • Falge, E., Baldocchi, D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans, R., Clement, R., Dolman, H., & Granier, A. (2001). Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 107(1), 43–69. https://doi.org/10.1016/S0168-1923(00)00225-2.

    Article  Google Scholar 

  • Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W, Haywood, J., Lean, J., Lowe, D.C., Myhre, G., & Nganga, J. (2007). Changes in atmospheric constituents and in radiative forcing. Chapter 2. In Climate change 2007. The physical science basis. http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter2.pdf.

  • Frankenberger, W., & Dick, W. A. (1983). Relationships between enzyme activities and microbial growth and activity indices in soil. Soil Science Society of America Journal, 47(5), 945–951. https://doi.org/10.2136/sssaj1983.03615995004700050021x.

    Article  CAS  Google Scholar 

  • García-Orenes, F., Guerrero, C., Roldán, A., Mataix-Solera, J., Cerdà, A., Campoy, M., Zornoza, R., Bárcenas, G., & Caravaca, F. (2010). Soil microbial biomass and activity under different agricultural management systems in a semiarid Mediterranean agroecosystem. Soil and Tillage Research, 109(2), 110–115. https://doi.org/10.1016/j.still.2010.05.005.

    Article  Google Scholar 

  • Government of India (GOI). (2014). All India report on number and area of operational holdings. New Delhi: Agriculture Census Division, Department of Agriculture & Co-Operation & Farmers Welfare. Ministry of Agriculture & Farmers Welfare.

  • Guo, J., & Zhou, C. (2007). Greenhouse gas emissions and mitigation measures in Chinese agroecosystems. Agricultural and Forest Meteorology, 142(2), 270–277. https://doi.org/10.1016/j.agrformet.2006.03.029.

    Article  Google Scholar 

  • Inubushi, K., Brookes, P. C., & Jenkinson, D. S. (1991). Soil microbial biomass C, N and ninhydrin-N in aerobic and anaerobic soils measured by the fumigation-extraction method. Soil Biology and Biochemistry, 23(8), 737–741. https://doi.org/10.1016/0038-0717(91)90143-8.

    Article  CAS  Google Scholar 

  • IPCC. (2007). Climate change 2007: the physical science basis, contribution of working group-I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Joosten, H., & Clarke, D. (2002). Wise use of mires and peatlands. Background and principles including a framework for decision-making. Finland: International Mire Conservation Group and International Peat Society, p. 304.

  • Kirk, D.M. & Bickert, W.G. (2004). The use of biochemical methane potential tests to evaluate the digestibility of processed dairy manure. ASAE Annual Meeting (p.1). American Society of Agricultural and Biological Engineers. doi: https://doi.org/10.13031/2013.16776.

  • Kristensen, L., Mann, J., Oncley, S. P., & Wyngaard, J. C. (1997). How close is close enough when measuring scalar fluxes with displaced sensors? Journal of Atmospheric and Oceanic Technology, 14(4), 814–821. https://doi.org/10.1175/15200426(1997)014<0814:HCICEW>2.0.CO;2.

    Article  Google Scholar 

  • Kyaw, K. M., & Toyota, K. (2007). Suppression of nitrous oxide production by the herbicides glyphosate and propanil in soils supplied with organic matter. Soil Science & Plant Nutrition, 53(4), 441–447. https://doi.org/10.1111/j.1747-0765.2007.00151.x.

    Article  CAS  Google Scholar 

  • Li, X., Gao, Z., Li, Y., & Tong, B. (2017). Comparison of sensible heat fluxes measured by a large aperture scintillometer and eddy covariance system over a heterogeneous farmland in east China. Atmosphere, 8(6), 101.

    Article  CAS  Google Scholar 

  • LICOR, Inc. (2011). Open path CO 2 /H 2 O gas analyzer instruction manual. Lincoln: LICOR Biosciences.

    Google Scholar 

  • Ling, Z. H., Guo, H., Cheng, H. R., & Yu, Y. F. (2011). Sources of ambient volatile organic compounds and their contributions to photochemical ozone formation at a site in the Pearl River Delta, southern China. Environmental Pollution, 159(10), 2310–2319.

    Article  CAS  Google Scholar 

  • Liu, H. P., Peters, G., & Foken, T. (2001). New equations for sonic temperature variance and buoyancy heat flux with an omnidirectional sonic anemometer [J]. Boundary Layer Meteorology, 100, 459–468. https://doi.org/10.1023/A:1019207031397.

    Article  Google Scholar 

  • Liu, Q. H., Zhou, X. B., Yang, L. Q., Li, T., & Zhang, J. J. (2009). Effects of early growth stage shading on rice flag leaf physiological characters and grain growth at grain-filling stage. Chinese Journal of Applied Ecology, 20(9), 2135–2141 (in Chinese with English abstract). https://doi.org/S1672630813601924.

    Google Scholar 

  • Lu, Y., Watanabe, A., & Kimura, M. (2002). Contribution of plant-derived carbon to soil microbial biomass dynamics in a paddy rice microcosm. Biology and Fertility of Soils, 36(2), 136–142.

    Article  CAS  Google Scholar 

  • Maljanen, M., Hytönen, J., & Martikainen, P. J. (2001). Fluxes of N2O, CH4 and CO2 on afforested boreal agricultural soils. Plant and Soil, 231(1), 113–121. https://doi.org/10.1023/A:1010372914805.

    Article  CAS  Google Scholar 

  • Manna, M. C., Swarup, A., Wanjari, R. H., & Ravankar, H. N. (2007). Long-term effect of NPK fertiliser and manure on soil fertility and a sorghum–wheat farming system. Australian Journal of Experimental Agriculture, 47, 700–711. https://doi.org/10.1007/s10661-015-4518-2.

    Article  CAS  Google Scholar 

  • Masseroni, D., Facchi, A., Romani, M., Chiaradia, E. A., Gharsallah, O., & Gandolfi, C. (2015). Surface energy flux measurements in a flooded and an aerobic rice field using a single eddy-covariance system. Paddy and Water Environment, 13(4), 405–424.

    Article  Google Scholar 

  • Matthews, R. B., Wassmann, R., Knox, J. W., & Buendia, L. V. (2000). Using a crop/soil simulation model and GIS techniques to assess methane emissions from rice fields in Asia. IV. Upscaling to national levels. Nutrient Cycling in Agroecosystems, 58(1–3), 201–217. https://doi.org/10.1023/A:1009850804425.

    Article  CAS  Google Scholar 

  • Mauder, M. & Foken, T. (2011). Documentation and instruction manual of the eddy covariance software package TK3, Work Report University of Bayreuth, Dept. of Micrometeorology, ISSN: 1614-8916, pp. 46, 58.https://doi.org/ARBERG046.

  • McDermitt, D., Burba, G., Xu, L., Anderson, T., Komissarov, A., Riensche, B., Schedlbauer, J., Starr, G., Zona, D., Oechel, W., & Oberbauer, S. (2011). A new low-power, open-path instrument for measuring methane flux by eddy covariance. Applied Physics B: Lasers and Optics, 102(2), 391–405. https://doi.org/10.1007/s00340-010-4307-0.

    Article  CAS  Google Scholar 

  • McMillan, A., Goulden, M. L. & Tyler, S. C. (2007). Stoichiometry of CH4 and CO2 flux in a California rice paddy. Journal of Geophysical Research: Biogeosciences, 112(G01008). https://doi.org/10.1029/2006JG000198.

  • Mitchell, P.L, Sheehy, J.E. & Woodward, F.I. (1998). Potential yields and the efficiency of radiation use in rice. IRRI Discussion Paper Ser. 32. IRRI, Manila, Philippines. https://doi.org/S0378429015001793.

  • Miyata, A., Leuning, R., Denmead, O. W., Kim, J., & Harazano, Y. (2000). Carbon dioxide and methane fluxes from an intermittently flooded paddy field. Agricultural and Forest Meteorology, 102, 287–303. https://doi.org/10.1016/S0168-1923(00)00092-7.

    Article  Google Scholar 

  • Nair, R., Juwarkar, A. A., Wanjari, T., Singh, S. K., & Chakrabarti, T. (2011). Study of terrestrial carbon flux by eddy covariance method in revegetated manganese mine spoil dump at Gumgaon, India. Climatic Change, 106, 609–619. https://doi.org/10.1007/s10584-010-9953-z.

    Article  CAS  Google Scholar 

  • Nannipieri, P., Grego, S., Ceccanti, B. (1990). Ecological significance of the biological activity in soil. In: Bollag JM, Stotzky G (eds) Soil biochemistry. Vol. 6, 293–355. doi https://doi.org/10.1016/19911950379.

  • Nayak, D. R., Babu, Y. J., & Adhya, T. K. (2007). Long-term application of compost influences microbial biomass and enzyme activities in a tropical Aeric Endoaquept planted to rice under flooded condition. Soil Biology and Biochemistry, 39, 1897–1906. https://doi.org/10.1016/j.soilbio.2007.02.003.

    Article  CAS  Google Scholar 

  • Neue, H. (1993). Methane emission from rice fields: wetland rice fields may make a major contribution to global warming. Bioscience, 43, 466–473 http://www.ciesin.org/docs/004-032/004-032.html.

    Article  Google Scholar 

  • Nisbet, R. E., Fisher, R., Nimmo, R. H., Bendall, D. S., Crill, P. M., Gallego-Sala, A. V., Hornibrook, E. R., López-Juez, E., Lowry, D., Nisbet, P. B., & Shuckburgh, E. F. (2009). Emission of methane from plants. Proceedings of the Royal Society of London B: Biological Sciences., 276(1660), 1347–1354. https://doi.org/10.1098/rspb.2008.1731.

    Article  CAS  Google Scholar 

  • Papale, D., & Valentini, R. (2003). A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatializaion. Global Change Biology, 9, 525–535. https://doi.org/10.1046/j.1365-2486.2003.00609.x.

    Article  Google Scholar 

  • Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., & Grünwald, T. (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11, 1424–1439. https://doi.org/10.1111/j.1365-2486.2005.001002.x.

    Article  Google Scholar 

  • Ren, W. J., Yang, W. Y., Xu, J. W., Fan, G. Q., Wang, L. Y., & Guan, H. (2002). Impact of low-light stress on leaves characteristics of rice after heading. Journal of Sichuan Agricultural University, 20(3), 205–208 http://dx.doi.org/285892666.

    Google Scholar 

  • Ruimy, A., Jarvis, P. G., Baldocchi, D. D., & Saugier, B. (1995). CO2 fluxes over plant canopies and solar radiation: a review. Advances in Ecological Research, 26, 1–68. https://doi.org/10.1016/S0065-2504(08)60063-X.

    Article  Google Scholar 

  • Saito, M., Miyata, A., Nagai, H., & Yamada, T. (2005). Seasonal variation of carbon dioxide exchange in rice paddy field in Japan. Agricultural and Forest Meteorology, 135(1), 93–109. https://doi.org/10.1016/j.agrformet.2005.10.007.

    Article  Google Scholar 

  • Santanello, J. A., & Friedl, M. A. (2003). Diurnal covariation in soil heat flux and net radiation. Journal of Applied Meteorology, 42, 851–862. https://doi.org/10.1175/1520-0450(2003)042<0851:DCISHF>2.0.CO2.

    Article  Google Scholar 

  • Sinclair, T. R., & Muchow, R. C. (1999). Radiation use efficiency. Advances in Agronomy, 65, 215–265. https://doi.org/10.1016/S0065-2113(08)60914-1.

    Article  Google Scholar 

  • Smith, P., Lanigan, G., Kutsch, W. L., Buchmann, N., Eugster, W., Aubinet, M., Ceschia, E., Béziat, P., Yeluripati, J. B., Osborne, B., & Moors, E. J. (2010). Measurements necessary for assessing the net ecosystem carbon budget of croplands. Agriculture, Ecosystems & Environment, 139(3), 302–315. https://doi.org/10.1016/j.agee.2010.04.004.

    Article  Google Scholar 

  • Swain, C. K., Bhattacharyya, P., Singh, N. R., Neogi, S., Sahoo, R. K., Nayak, A. K., Zhang, G., & Leclerc, M. Y. (2016). Net ecosystem methane and carbon dioxide exchange in relation to heat and carbon balance in lowland tropical rice. Ecological Engineering, 95, 364–374. https://doi.org/10.1016/j.ecoleng.2016.06.053.

    Article  Google Scholar 

  • Tanner, C.B. & Thurtell, GW. (1969). Anemoclinometer measurements of Reynolds stress and heat transport in the atmospheric surface layer. Wisconsin Univ-Madison Dept of Soil Science. http://dx.doi.org/AD0689487.

  • Tsai, J. L., Tsuang, B. J., & Lu, P. S. (2007). Surface energy components and land characteristics of a rice paddy. Journal of Applied Meteorology, 46, 1879–1900. https://doi.org/10.1175/2007JAMC1568.1.

    Article  Google Scholar 

  • Tseng, H. K., Tsai, L. J., Alagesan, A., Tsuang, J. B., Yao, H. M., & Kuo, H. P. (2010). Determination of methane and carbon dioxide fluxes during the rice maturity period in Taiwan by combining profile and eddy covariance measurements. Agriculture and Forest Meteorology, 150, 852–859. https://doi.org/10.1016/j.agrformet.2010.04.007.

    Article  Google Scholar 

  • Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass carbon. Soil Biology and Biochemistry, 19, 703–707. https://doi.org/10.1016/0038-0717(87)90052-6.

    Article  CAS  Google Scholar 

  • Vickers, D., & Mahrt, L. (1997). Quality control and flux sampling problems for tower and aircraft data. Journal of Atmospheric and Oceanic Technology, 14, 512–526. https://doi.org/10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2.

    Article  Google Scholar 

  • Wassmann, R., Lantin, R. S., Neue, H. U., Buendia, L. V., Corton, T. M., & Lu, Y. (2000). Characterization of methane emissions from rice fields in Asia. III. Mitigation options and future research needs. Nutrient Cycling in Agroecosystems, 58(1), 23–36.

    Article  CAS  Google Scholar 

  • Webb, E. K., Pearman, G. I., & Leuning, R. (1980). Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society, 106, 85–100. https://doi.org/10.1002/qj.49710644707.

    Article  Google Scholar 

  • Wilczak, J. M., Oncley, S. P., & Stage, S. A. (2001). Sonic anemometers tilt correction algorithms. Boundary Layer Meteorology, 99, 127–150. https://doi.org/10.1023/A:1018966204465.

    Article  Google Scholar 

  • Win, K. T., Nonaka, R., Win, A. T., Sasada, Y., Toyota, K., Motobayashi, T., & Hosomi, M. (2012). Comparison of methanotrophic bacteria, methane oxidation activity, and methane emission in rice fields fertilized with anaerobically digested slurry between fodder rice and a normal rice variety. Paddy and Water Environment, 10(4), 281–289. https://doi.org/10.1007/s10333-011-0279-x.

    Article  Google Scholar 

  • Witt, C., Gaunt, J. L., Galicia, C. C., Ottow, J. C. G., & Neue, H. U. (2000). A rapid chloroform fumigation–extraction method for measuring soil microbial biomass carbon and nitrogen in flooded rice soils, Biology and Fertility of Soils., 30, 510–519. https://doi.org/10.1007/s003740050030.

  • Zheng, X., Han, S., Huang, Y., Wang, Y., & Wang, M. (2004). Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands. Global Biogeochemical Cycles, 18(2).

Download references

Funding

The work has been partially supported by a grant from the ICAR-NICRA project and NRRI. Part of the result is the finding for the doctorate degree of Mr. Chinmaya Kumar Swain. The authors are thankful to LICOR Inc., Campbell Scientific Corp. (Canada), and Elcome Technologies Pvt. Ltd. for their technical assistance and support during the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaresh Kumar Nayak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, C.K., Nayak, A.K., Bhattacharyya, P. et al. Greenhouse gas emissions and energy exchange in wet and dry season rice: eddy covariance-based approach. Environ Monit Assess 190, 423 (2018). https://doi.org/10.1007/s10661-018-6805-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6805-1

Keywords

Navigation