Water quality variation during a strong El Niño event in 2016: a case study in Kampar River, Malaysia

  • Casey Keat-Chuan Ng
  • Choo-Hou Goh
  • Jia-Chun Lin
  • Minn-Syenn Tan
  • Willie Bong
  • Chea-Soon Yong
  • Jun-Yao Chong
  • Peter Aun-Chuan Ooi
  • Wey-Lim Wong
  • Gideon Khoo
Article

Abstract

El Niño and Southern Oscillation (ENSO) is a natural forcing that affects global climate patterns, thereon influencing freshwater quality and security. In the advent of a strong El Niño warming event in 2016 which induced an extreme dry weather in Malaysia, water quality variation was investigated in Kampar River which supplies potable water to a population of 92,850. Sampling points were stratified into four ecohydrological units and 144 water samples were examined from October 2015 to March 2017. The Malaysian Water Quality Index (WQI) and some supplementary parameters were analysed in the context of reduced precipitation. Data shows that prolonged dry weather, episodic and sporadic pollution incidents have caused some anomalies in dissolved oxygen (DO), total suspended solids (TSS), turbidity and ammoniacal nitrogen (AN) values recorded and the possible factors are discussed. The month of March and August 2016 recorded the lowest precipitation, but the overall resultant WQI remained acceptable. Since the occurrence of a strong El Niño event is infrequent and far between in decadal time scale, this paper gives some rare insights that may be central to monitoring and managing freshwater resource that has a crucial impact to the mass population in the region of Southeast Asia.

Keywords

Drought El Niño Pollution Water quality 

Notes

Acknowledgements

We are grateful to Samberan bin Bah Pasu of Ulu Kampar village who assisted in the study. We are also thankful to anonymous reviewers who have provided valuable comments. This manuscript would not be possible without their contributions.

References

  1. Benckiser, G., Schartel, T., & Weiske, A. (2015). Control of NO3− and N2O emissions in agroecosystems: a review. Agronomy for Sustainable Development, 35, 1059–1074.CrossRefGoogle Scholar
  2. Binding, C. E., Greenberg, T. A., & Bukata, R. P. (2011). Time series analysis of algal blooms in Lake of the Woods using the MERIS maximum chlorophyll index. Journal of Plankton Research, 33(12), 1847–1852.CrossRefGoogle Scholar
  3. Bond, N. R., Lake, P. S., & Arthington, A. H. (2008). The impacts of drought on freshwater ecosystems: an Australian perspective. Hydrobiologia, 600, 3–16.CrossRefGoogle Scholar
  4. Chen, W., He, B., Nover, D., Duan, W., Luo, C., Zhao, K., & Chen, W. (2018). Spatiotemporal patterns and source attribution of nitrogen pollution in a typical headwater agricultural watershed in Southeastern China. Environmental Science and Pollution Research, 25, 2756–2773.  https://doi.org/10.1007/s11356-017-0685-8.
  5. Chan, N. W., & Ghani, A. A. (2016). Addressing water resources shortfalls due to climate change in Penang, Malaysia, In: Water security and climate change: challenges and opportunities in Asia, 29 November–01 December 2016. Bangkok: Asian Institute of Technology.Google Scholar
  6. Degefu, M. A., & Bewket, W. (2017). Variability, trends, and teleconnections of stream flows with large-scale climate signals in the Omo-Ghibe River Basin, Ethiopia. Environmental Monitoring and Assessment, 189, 142.  https://doi.org/10.1007/s10661-017-5862-1.
  7. Department of Environment (DOE). (2008). Malaysia environmental quality report (2008). Kuala Lumpur: Ministry of Natural Resources and Environment Malaysia.Google Scholar
  8. Department of Irrigation and Drainage (DID). (2009). Study on the river water quality trends and indexes in Peninsular Malaysia: Water Resources Publication No. 21, http://irep.iium.edu.my/30722/1/WRP_21_Water_Quality_Trend_and_Index.pdf. Accessed 23 June 2017.
  9. Department of Irrigation and Drainage (DID). (2017). Perak: online river level data, http://infobanjir.water.gov.my/waterlevel_page.cfm?state=PRK. Accessed 11 May 2017.
  10. Economic Planning Unit (EPU). (2000). National Water Resources Study 2000–2050. Kuala Lumpur: Department of Prime Minister’s Office.Google Scholar
  11. Edwards, R. T., & Meyer, J. L. (1987). Metabolism of a sub-tropical low gradient black water river. Freshwater Biology, 17(2), 51–263.CrossRefGoogle Scholar
  12. Elosegi, A., & Pozo, J. (2016). Altered organic matter dynamics in rivers and streams: ecological consequences and management implications. Limnetica, 35(2), 303–322.Google Scholar
  13. Ertel, J. R., Hedges, J. I., Devol, A. H., Richey, J. E., & Ribeiro, M. D. M. G. (1986). Dissolved humic substances of the Amazon River System. Limnology and Oceanography, 31(4), 739–754.CrossRefGoogle Scholar
  14. Górski, J., Dragon, K., & Kaczmarek, P. M. J. (2017). Nitrate pollution in the Warta River (Poland) between 1958 and 2016: trends and causes. Environmental Science and Pollution Research.  https://doi.org/10.1007/s11356-017-9798-3.
  15. Hanna, D. M., Sadler, J. P., & Wood, P. J. (2007). Hydroecology and ecohydrology: a potential route forward? Hydrological Processes, 21, 3385–3390.CrossRefGoogle Scholar
  16. Harun, S., Abdullah, M. H., Mohamed, M., Fikri, A. H., & Jimmy, E. O. (2010). Water quality study of four streams within Maliau Basin Conservation Area, Sabah, Malaysia. Journal of Tropical Biology and Conservation, 6, 109–113.Google Scholar
  17. Hladyz, S., Watkins, S. C., Whitworth, K. L., & Baldwin, D. S. (2011). Flows and hypoxic blackwater events in managed ephemeral river channels. Journal of Hydrology, 401(1–2), 117–125.CrossRefGoogle Scholar
  18. Jiménez-Muñoz, J. C., Mattar, C., Barichivich, J., Santamaría-Artigas, A., Takahashi, K., Malhi, Y., Sobrino, J. A., & Schrier, G. . . (2016). Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Scientific Reports, 6, 33130.CrossRefGoogle Scholar
  19. Jouanneau, S., Recoules, L., Durand, M. J., Boukabache, A., Picot, V., Primault, Y., Lakel, A., Sengelin, M., Barillon, B., & Thouand, G. (2014). Methods for assessing biochemical oxygen demand (BOD): a review. Water Research, 49, 62–85.CrossRefGoogle Scholar
  20. Kennard, M. J., Mackay, S. J., Pusey, B. J., Olden, J. D., & Marsh, N. (2010). Quantifying uncertainty in estimation of hydrologic metrics for ecohydrological studies. River Research and Applications, 26(2), 137–156.Google Scholar
  21. Lakani, F. B., Sattari, M., Sharifpour, I., & Kazemi, R. (2013). Effect of hypoxia, normoxia and hyperoxia conditions on gill histopathology in two weight groups of beluga (Huso huso). Caspian Journal of Environmental Sciences, 11(1), 77–84.Google Scholar
  22. Laubach, J., Taghizadeh-Toosi, A., Gibbs, S. J., Sherlock, R. R., Kelliher, F. M., & Grover, P. P. (2013). Ammonia emissions from cattle urine and dung excreted on pasture. Biogeosciences, 10, 327–338.CrossRefGoogle Scholar
  23. Li, Z., Liu, H., Luo, C., Li, Y., Li, H., Pan, J., Jiang, X., Zhou, Q., & Xiong, Z. (2015). Simulation of runoff and nutrient export from a typical small watershed in China using the Hydrological Simulation Program-Fortran. Environmental Science and Pollution Research, 22(10), 7954–7966.CrossRefGoogle Scholar
  24. Maeda, E. E., Kim, H., Aragão, L. E. O. C., Famiglietti, J. S., & Oki, T. (2015). Disruption of hydroecological equilibrium in southwest Amazon mediated by drought. Geophysical Research Letters, 42, 7546–7553.CrossRefGoogle Scholar
  25. Magaña, V. O., & Conde, C. (2000). Climate and freshwater resources in Northern Mexico: Sonora, a case study. Environmental Monitoring and Assessment, 61, 167–185.  https://doi.org/10.1023/A:1006399025537.CrossRefGoogle Scholar
  26. Mallin, M. A., Johnson, V. L., Ensign, S. H., & MacPherson, T. A. (2006). Factors contributing to hypoxia in rivers, lakes, and streams. Limnology and Oceanography, 51(1), 690–701.CrossRefGoogle Scholar
  27. Meteorological Department Malaysia. (2017). Monthly weather bulletin. http://www.met.gov.my/web/metmalaysia/publications/bulletinpreview/monthlyweather?p_p_id=122_INSTANCE_phshFS8dJslQ&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view&p_p_col_id=_118_INSTANCE_F96odbUpU62g__column-2&p_p_col_count=1&p_r_p_564233524_categoryId=. Accessed 13 May 2017.
  28. Meyer, J. L. (1990). Blackwater perspective on riverine ecosystems. Bioscience, 4(9), 643–651.CrossRefGoogle Scholar
  29. Meyer, J. L., & Edwards, R. T. (1990). Ecosystem metabolism and turnover of organic carbon along a blackwater river continuum. Ecology, 71(2), 668–677.CrossRefGoogle Scholar
  30. Ministry of Natural Resources and Environment (MNRE). (2009). Study on the river water quality trends and indexes in peninsular Malaysia: Water Resources Publication No. 21 [Online]. Available at: http://irep.iium.edu.my/30722/1/WRP_21_Water_Quality_Trend_and_Index.pdf [Accessed: 05 July 2015].
  31. Ministry of Natural Resources and Environment (MNRE). (2011). The review of national water resource study (2000–2050) and formulation of national water resources policy: final report. http://www.water.gov.my/images/Hidrologi/NationalWaterResourcesStudy/Vol13Perak.pdf. Accessed 09 April 2017.
  32. Mosley, L., Barnett, L., Leyden, E., Fradley, K., Iacopetta, J., Jolley, A. M., Peter, M., Natt, A., Palmer, D., Scott, P., Spencer, J., Stone, D., & Zammit, B. (2013). Water quality in the lower lakes during a hydrological drought: water quality monitoring report. Water and Natural Resources, Adelaide: Department for Environment.Google Scholar
  33. Natural Oceanic and Atmospheric Administration, US (NOAA). (2017). Historical El Niño/La Nina episodes. http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php. Accessed 13 Nov 2017.
  34. O’Connell, M., Baldwin, D. S., Robertson, A. I., & Rees, G. (2000). Release and bioavailability of dissolved organic matter from floodplain litter: influence of origin and oxygen levels. Freshwater Biology, 45, 333–342.CrossRefGoogle Scholar
  35. Parolin, P., & Worbes, M. (2000). Wood density of trees in blackwater floodplains of Roi Jau National Park, Amazonia, Brazil. Acta Amazonica, 30(3), 441–448.CrossRefGoogle Scholar
  36. Rembold, F., Leo, O., Nègre, T., & Hubbard, N. (2015). The 2015-2016 El Niño event: expected impact on food security and main response scenarios in East and Southern Africa. European Union, EUR 27653, http://publications.jrc.ec.europa.eu/repository/bitstream/JRC98751/lb-na-27653-en-n.pdf. Accessed 03 August 2016.
  37. Rhodes, L. L., Haywood, A. J., Ballantine, W. J., & MacKenzie, A. L. (1993). Algal blooms and climate anomalies in north-east New Zealand, August-December 1992. N. Z. J. Mar. Freshwater Research, 27(4), 419–430.CrossRefGoogle Scholar
  38. Rojas, O., Li, Y., & Cumani, R. (2014). Understanding the drought impact of El Niño on the global agricultural areas: an assessment using FAO’s agricultural stress index (ASI). Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  39. Suratman, S., Che Zan, N. H., Aziz, A. A., & Tahir, N. M. (2017). Spatial and seasonal variations of organic carbon-based nutrients in Setiu wetland, Malaysia. Sains Malaysiana, 46(6), 859–865.CrossRefGoogle Scholar
  40. Turnbull, L., Wilcox, B. P., Belnap, J., Ravi, S., D’Odorico, P., Childers, D., Gwenzi, W., Okin, G., Wainwright, J., Caylor, K. K., & Sankey, T. (2012). Understanding the role of ecohydrological feedbacks in ecosystem state change in drylands. Ecohydrology, 5(2), 174–183.CrossRefGoogle Scholar
  41. Varotsos, C. A., Tzanis, C. G., & Sarlis, N. V. (2016). On the progress of the 2015–2016 El Niño event. Atmospheric, Chemistry and Physics, 16, 2007–2011.CrossRefGoogle Scholar
  42. Veldkamp, T. I. E., Eisner, S., Wada, Y., Aerts, J. C. J. H., & Ward, P. J. (2015). Sensitivity of water scarcity events to ENSO driven climate variability at the global scale. Hydrology and Earth System Sciences, 12(6), 5465–5517.CrossRefGoogle Scholar
  43. Wallace, T. A., Ganf, G. G., & Brookes, J. D. (2008). A comparison of phosphorus and DOC leachates from different types of leaf litter in an urban environment. Freshwater Biology, 53(9), 1902–1913.CrossRefGoogle Scholar
  44. Wang, C., Deser, C., Yu, J. Y., DiNezio, P., & Clement, A. (2017). El Niño and Southern Oscillation (ENSO): a review, In: Coral reefs of the Eastern Tropical Pacific, Coral Reefs of the World 8. New York: Springer Science Publisher.Google Scholar
  45. Wilcox, B. P., Breshears, D. D., & Allen, C. D. (2003). Ecohydrology of a resource-conserving semiarid woodland: effects of scale and disturbance. Ecological Monographs, 73, 223–239.CrossRefGoogle Scholar
  46. Wittig, R., König, K., Schmidt, M., & Szarzynski., J (2007). A study of climate change and anthropogenic impacts in West Africa. Environmental Science and Pollution Research, 14(3), 182–189.Google Scholar
  47. World Meteorological Organization (WMO). (2014). El Niño Southern Oscillation. Geneva, Switzerland, http://www.wmo.int/pages/prog/wcp/wcasp/documents/JN142122_WMO1145_EN_web.pdf. Accessed 10 August 2015.
  48. Zainudin, Z. (2008). The many intricacies of biochemical oxygen demand, In: Jurutera monthly bulletin. Kuala Lumpur: Institution of Engineers Malaysia (IEM).Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Casey Keat-Chuan Ng
    • 1
  • Choo-Hou Goh
    • 1
  • Jia-Chun Lin
    • 1
  • Minn-Syenn Tan
    • 1
  • Willie Bong
    • 1
  • Chea-Soon Yong
    • 1
  • Jun-Yao Chong
    • 1
  • Peter Aun-Chuan Ooi
    • 1
  • Wey-Lim Wong
    • 1
  • Gideon Khoo
    • 1
  1. 1.Faculty of ScienceUniversiti Tunku Abdul Rahman, Jalan Universiti Bandar BaratKamparMalaysia

Personalised recommendations