Advertisement

Exploring evapotranspiration dynamics over Sub-Sahara Africa (2000–2014)

  • Christopher E. Ndehedehe
  • Onuwa Okwuashi
  • Vagner G. Ferreira
  • Nathan O. Agutu
Article

Abstract

Monitoring changes in evapotranspiration (ET) is useful in the management of water resources in irrigated agricultural landscapes and in the assessment of crop stress and vegetation conditions of drought-vulnerable regions. Information on the impacts of climate variability on ET dynamics is profitable in developing water management adaptation strategies. Such impacts, however, are generally unreported and not conclusively determined in some regions. In this study, changes in MODIS (Moderate Resolution Imaging Spectroradiometer)-derived ET (2000–2014) over large proportions of Sub-Sahara Africa (SSA) are explored. The multivariate analyses of ET over SSA showed that four leading modes of observed dynamics in ET, accounting for about 90% of the total variability, emanated mostly from some sections of the Sudano-Sahel and Congo basin. Based on Man-Kendall’s statistics, significant positive trends (α = 0.05) in ET over the Central African Republic and most parts of the Sahel region were observed. Over much of the Congo basin nonetheless, ET showed significant (α = 0.05) distributions of widespread negative trends. These trends in ET were rather found to be consistent with observed changes in model soil moisture but not in all locations, perhaps due to inconsistent trends in maximum rainfall and land surface temperature. However, the results of spatio-temporal drought analysis confirm that the extensive ET losses in the Congo basin were somewhat induced by soil moisture deficits. Amidst other prominent drivers of ET, the dynamics of ET over the terrestrial ecosystems of SSA appear to be a more complex phenomenon that may transcend natural climate variations.

Keywords

Evapotranspiration Rainfall Drought Temperature Congo basin Soil moisture 

Notes

Acknowledgments

The authors are grateful to CSR, NOAA, and NASA for all the data used in this study. They also thank the Editor and the two anonymous reviewers for their valuable comments.

Funding information

Christopher E. Ndehedehe received funding from Curtin University through the CSIRS programme, which supported his research during the period when part of this study was undertaken.

References

  1. A, G., Velicogna, I., Kimball, J.S., Kim, Y. (2015). Impact of changes in GRACE derived terrestrial water storage on vegetation growth in Eurasia. Environmental Research Letters, 10(12), 124024.CrossRefGoogle Scholar
  2. Abiy, A.Z., & Melesse, A. (2017). Evaluation of watershed scale changes in groundwater and soil moisture storage with the application of {GRACE} satellite imagery data. CATENA, 153, 50–60.  https://doi.org/10.1016/j.catena.2017.01.036.CrossRefGoogle Scholar
  3. Abtew, W., & Melesse, A. (2013). Climate change and evapotranspiration. In Evaporation and evapotranspiration: measurements and estimations (pp. 197–202).  https://doi.org/10.1017/978-94-007-4737-1_13.
  4. Agutu, N., Awange, J., Zerihun, A., Ndehedehe, C., Kuhn, M., Fukuda, Y. (2017). Assessing multi-satellite remote sensing, reanalysis, and land surface models’ products in characterizing agricultural drought in East Africa. Remote Sensing of Environment, 194(0), 287–302.  https://doi.org/10.1016/j.rse.2017.03.041.CrossRefGoogle Scholar
  5. Ahmed, M., Sultan, M., Wahr, J., Yan, E. (2014). The use of GRACE data to monitor natural and anthropogenic induced variations in water availability across Africa. Earth Science Reviews, 136, 289–300.  https://doi.org/10.1016/j.earscirev.2014.05.009.CrossRefGoogle Scholar
  6. Alemu, H., Kaptué, A.T., Senay, G.B., Wimberly, M.C., Henebry, G.M. (2015). Evapotranspiration in the Nile Basin: identifying dynamics and drivers, 2002—2011. Water, 7, 4914–4931.  https://doi.org/10.3390/w7094914.CrossRefGoogle Scholar
  7. Andam-Akorful, S.A., Ferreira, V.G., Awange, J.L., Forootan, E., He, X.F. (2015). Multi-model and multi-sensor estimations of evapotranspiration over the Volta Basin, West Africa. International Journal of Climatology, 35(10), 3132–3145.  https://doi.org/10.1002/joc.4198.CrossRefGoogle Scholar
  8. Awange, J., Forootan, E., Kuhn, M., Kusche, J., Heck, B. (2014). Water storage changes and climate variability within the Nile Basin between 2002 and 2011. Advances in Water Resources, 73(0), 1–15.  https://doi.org/10.1016/j.advwatres.2014.06.010.CrossRefGoogle Scholar
  9. Boergens, E., Rangelova, E., Sideris, M.G., Kusche, J. (2014). Assessment of the capabilities of the temporal and spatiotemporal ICA method for geophysical signal separation in GRACE data. Journal of Geophysical Research Solid Earth, 119, 4429–4447.  https://doi.org/10.1002/2013JB010452.CrossRefGoogle Scholar
  10. Cao, G., Han, D., Song, X. (2014). Evaluating actual evapotranspiration and impacts of groundwater storage change in the North China Plain. Hydrological Processes, 28(4), 1797–1808.  https://doi.org/10.1002/hyp.9732.CrossRefGoogle Scholar
  11. Cardoso, J.F. (1999). High-order contrasts for independent component analysis. Neural Computation, 11, 157–192.CrossRefGoogle Scholar
  12. Cardoso, J.F., & Souloumiac, A. (1993). Blind beamforming for non-gaussian signals. IEE Proceedings, 140(6), 362–370.Google Scholar
  13. Descroix, L., Mahé, G., Lebel, T., Favreau, G., Galle, S., Gautier, E., Olivry, J.-C., Albergel, J., Amogu, O., Cappelaere, B., Dessouassi, R., Diedhiou, A., Breton, E.L., Mamadou, I., Sighomnou, D. (2009). Spatio-temporal variability of hydrological regimes around the boundaries between Sahelian and Sudanian areas of West Africa: a synthesis. Journal of Hydrology, 375 (1–2), 90–102.  https://doi.org/10.1016/j.jhydrol.2008.12.012.CrossRefGoogle Scholar
  14. Fan, Y., & Dool, H.V. (2004). Climate prediction center global monthly soil moisture data set at 0.5 resolution for 1948 to present. Journal Of Geophysical Research, 109, D10102.  https://doi.org/10.1029/2003JD004345.CrossRefGoogle Scholar
  15. Farahmand, A., & AghaKouchak, A. (2015). A generalized framework for deriving nonparametric standardized drought indicators. Advances in Water Resources, (76), 140–145.  https://doi.org/10.1016/j.advwatres.2014.11.012.
  16. Fenoglio-Marc, L., Rietbroek, R., Grayek, S., Becker, M., Kusche, J., Stanev, E. (2012). Water mass variation in the Mediterranean and Black Seas. Journal of Geodynamics, 59-60, 168–182.CrossRefGoogle Scholar
  17. Ferreira, V., & Asiah, Z. (2015). An investigation on the closure of the water budget methods over Volta Basin using multi-satellite data. International Association of Geodesy Symposia.  https://doi.org/10.1007/1345-2015-137.
  18. Frappart, F., Ramillien, G., Leblanc, M., Tweed, S.O., Bonnet, M.-P., Maisongrande, P. (2011). An independent component analysis filtering approach for estimating continental hydrology in the GRACE gravity data. Remote Sensing of Environment, 115(1), 187–204.  https://doi.org/10.1016/j.rse.2010.08.017.CrossRefGoogle Scholar
  19. Frenken, K. (2005). Irrigation in Africa in figures. FAO Land and Water Development Division, p. 89. Retrieved from: ftp://ftp.fao.org/agl/aglw/docs/wr29-eng.pdf. Accessed 22 Jan 2016.
  20. Gond, V., Fayolle, A., Pennec, A., Cornu, G., Mayaux, P., Camberlin, P., Doumenge, C., Fauvet, N., Gourlet-Fleury, S. (2013). Vegetation structure and greenness in central africa from modis multi-temporal data. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 368(1625).  https://doi.org/10.1098/rstb.2012.0309.
  21. Gowda, P.H., Chavez, J.L., Colaizzi, P.D., Evett, S.R., Howell, T.A., Tolk, J.A. (2008). ET mapping for agricultural water management: present status and challenges. Irrigation Science, 26(3), 223–237.  https://doi.org/10.1007/s00271-007-0088-6.CrossRefGoogle Scholar
  22. Han, S., Xu, D., Yang, Z. (2017). Irrigation-induced changes in evapotranspiration demand of Awati irrigation district, Northwest China: weakening the effects of water saving? Sustainability, 9(9).  https://doi.org/10.3390/su9091531.
  23. Hannachi, A., Jolliffe, I.T., Stephenson, D.B. (2007). Empirical orthogonal functions and related techniques in atmospheric science: a review. International Journal of Climatology, 27, 1119–1152.  https://doi.org/10.1029/96JC00922.CrossRefGoogle Scholar
  24. Hanson, R.L. (2013). Evapotranspiration and droughts. U. S. Geological Survey. Retrieved from: http://geochange.er.usgs.gov/sw/changes/natural/et/. Accessed 7 Jan 2016.
  25. Hao, Z., & AghaKouchak, A. (2014). A nonparametric multivariate multi-index drought monitoring framework. Journal of Hydrometeorology, 15(1), 89–101.  https://doi.org/10.1175/JHM-D-12-0160.1.CrossRefGoogle Scholar
  26. Hendricks, J.R., Leben, R.R., Born, G.H., Koblinsky, C.J. (1996). Empirical orthogonal function analysis of global TOPEX/POSEIDON altimeter data and implications for detection of global sea level rise. Journal of Geophysical Research, 101(C6), 14131–14145.  https://doi.org/10.1029/96JC00922.CrossRefGoogle Scholar
  27. Hua, W., Zhou, L., Chen, H., Nicholson, S.E., Raghavendra, A., Jiang, Y. (2016). Possible causes of the Central Equatorial African long-term drought. Environmental Research Letters, 11 (12), 124002.  https://doi.org/10.1088/1748-9326/11/12/124002.CrossRefGoogle Scholar
  28. Huntington, T.G. (2006). Evidence for intensification of the global water cycle: review and synthesis. Journal of Hydrology, 319(14), 83–95.  https://doi.org/10.1016/j.jhydrol.2005.07.003.CrossRefGoogle Scholar
  29. Jung, M., Reichstein, M., Ciais, P., Seneviratne, S.I., Sheffield, J., Goulden, M.L., Bonan, G., Cescatti, A., Chen, J., Jeu, R. d., Dolman, A.J., Eugster, W., Gerten, D., Gianelle, D., Gobron, N., Heinke, J., Kimball, J., Law, B.E., Montagnani, L., Mu, Q., Mueller, B., Oleson, K., Papale, D., Richardson, A.D., Roupsard, O., Running, S., Tomelleri, E., Viovy, N., Weber, U., Williams, C., Wood, E., Zaehle, S., Zhang, K. (2010). Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467(7318), 951–954.CrossRefGoogle Scholar
  30. Kendall, M.G. (1970). Rank correlation methods, 4th edn. London: Griffin.Google Scholar
  31. Kumar, R., Musuuza, J.L., Loon, A.F.V., Teuling, A.J., Barthel, R., Broek, J.T., Mai, J., Samaniego, L., Attinger, S. (2015). Multiscale evaluation of the standardized precipitation index as a groundwater drought indicator. Hydrology and Earth System Sciences, 12, 7405–7436.  https://doi.org/10.5194/hessd-12-7405-2015.CrossRefGoogle Scholar
  32. Kummerow, C., Simpson, J., Thiele, O., Barnes, W., Chang, A.T.C., Stocker, E., Adler, R.F., Hou, A., Kakar, R., Wentz, F., Ashcroft, P., Kozu, T., Hong, Y., Okamoto, K., Iguchi, T., Kuroiwa, H., Im, E., Haddad, Z., Huffman, G., Ferrier, B., Olson, W.S., Zipser, E., Smith, E.A., Wilheit, T.T., North, G., Krishnamurti, T., Nakamura, K. (2000). The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. Journal of Applied Meteorology, 39(12), 1965–1982.  https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2.CrossRefGoogle Scholar
  33. Landerer, F.W., & Swenson, S.C. (2012). Accuracy of scaled GRACE terrestrial water storage estimates. Water Resources Research, 48(4), W04531.  https://doi.org/10.1029/2011WR011453.CrossRefGoogle Scholar
  34. Li, Y., Huang, C., Hou, J., Gu, J., Zhu, G., Li, X. (2017). Mapping daily evapotranspiration based on spatiotemporal fusion of ASTER and MODIS images over irrigated agricultural areas in the Heihe River Basin, Northwest China. Agricultural and Forest Meteorology, 244-245(Supplement C), 82–97.  https://doi.org/10.1016/j.agrformet.2017.05.023.CrossRefGoogle Scholar
  35. Liu, M., Tian, H., Chen, G., Ren, W., Zhang, C., Liu, J. (2008). Effects of land-use and land-cover change on evapotranspiration and water yield in China during 1900–20001. Journal of the American Water Resources Association, 44(5), 1193–1207.  https://doi.org/10.1111/j.1752-1688.2008.00243.x.CrossRefGoogle Scholar
  36. Liu, Y., Zhuang, Q., Chen, M., Pan, Z., Tchebakova, N., Sokolov, A., Kicklighter, D., Melillo, J., Sirin, A., Zhou, G., He, Y., Chen, J., Bowling, L., Miralles, D., Parfenova, E. (2013). Response of evapotranspiration and water availability to changing climate and land cover on the Mongolian Plateau during the 21st century. Global and Planetary Change, 108, 85–99.  https://doi.org/10.1016/j.gloplacha.2013.06.008.CrossRefGoogle Scholar
  37. Liu, Y., Zhuang, Q., Pan, Z., Miralles, D., Tchebakova, N., Kicklighter, D., Chen, J., Sirin, A., He, Y., Zhou, G., Melillo, J. (2014). Response of evapotranspiration and water availability to the changing climate in northern eurasia. Climatic Change, 126(3-4), 413–427.CrossRefGoogle Scholar
  38. Long, D., Longuevergne, L., Scanlon, B.R. (2014). Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resources Research, 50(2), 1131–1151.CrossRefGoogle Scholar
  39. Machiwal, D., & Jha, M.K. (2012). Hydrological time series: theory and practice. India: Springer.CrossRefGoogle Scholar
  40. Mann, H.B. (1945). Nonparametric tests against trend. Econometrica, 13(3), 245–259.  https://doi.org/10.2307/1907187.CrossRefGoogle Scholar
  41. Marshall, M., Funk, C., Michaelsen, J. (2012a). Examining evapotranspiration trends in Africa. Climate Dynamics, 38(9-10), 1849–1865.  https://doi.org/10.1007/s00382-012-1299-y.
  42. Marshall, M.T., Funk, C., Michaelsen, J. (2012b). Agricultural drought monitoring in Kenya using evapotranspiration derived from remote sensing and reanalysis data, in remote sensing of drought: innovative monitoring approaches, (pp. 169–194). Boca Raton: CRC Press.  https://doi.org/10.1201/b11863-1110.1201/b11863-11.
  43. Marshall, M., Tu, K., Funk, C., Michaelsen, J., Williams, P., Williams, C., Ardö, J., Boucher, M., Cappelaere, B., de Grandcourt, A., Nickless, A., Nouvellon, Y., Scholes, R., Kutsch, W. (2013). Improving operational land surface model canopy evapotranspiration in Africa using a direct remote sensing approach. Hydrology and Earth System Sciences, 17(3), 1079–1091.  https://doi.org/10.5194/hess-17-1079-2013.CrossRefGoogle Scholar
  44. McKee, T.B., Doeskin, N.J., Kieist, J. (1993). The relationship of drought frequency and duration to time scales. In Conference on Applied Climatology, American Meteorological Society, Boston, Massachusetts (pp. 179–184). Retrieved from: www.ccc.atmos.colostate.edu/relationshipofdroughtfrequency.pdf. Accessed 27 June 2014.
  45. Mishra, A.K., & Singh, V.P. (2010). A review of drought concepts. Journal of Hydrology, 391, 202–216.  https://doi.org/10.1016/j.jhydrol.2010.07.012.CrossRefGoogle Scholar
  46. Mu, Q., Zhao, M., Running, S.W. (2011). Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment, 115(8), 1781–1800.  https://doi.org/10.1016/j.rse.2011.02.019.CrossRefGoogle Scholar
  47. Ndehedehe, C., Awange, J., Agutu, N., Kuhn, M., Heck, B. (2016a). Understanding changes in terrestrial water storage over West Africa between 2002 and 2014. Advances in Water Resources, 88, 211–230.  https://doi.org/10.1016/j.advwatres.2015.12.009.
  48. Ndehedehe, C.E., Agutu, N.O., Okwuashi, O.H., Ferreira, V.G. (2016b). Spatio-temporal variability of droughts and terrestrial water storage over Lake Chad Basin using independent component analysis. Journal of Hydrology, 540, 106–128.  https://doi.org/10.1016/j.jhydrol.2016.05.068.
  49. Ndehedehe, C.E., Awange, J.L., Corner, R., Kuhn, M., Okwuashi, O. (2016c). On the potentials of multiple climate variables in assessing the spatio-temporal characteristics of hydrological droughts over the Volta Basin. Science of the Total Environment, 557-558, 819–837.  https://doi.org/10.1016/j.scitotenv.2016.03.004.
  50. Ndehedehe, C.E., Awange, J., Kuhn, M., Agutu, N., Fukuda, Y. (2017a). Analysis of hydrological variability over the Volta river basin using in-situ data and satellite observations. Journal of Hydrology: Regional studies, 12, 88–110.  https://doi.org/10.1016/j.ejrh.2017.04.005.
  51. Ndehedehe, C.E., Awange, J., Kuhn, M., Agutu, N., Fukuda, Y. (2017b). Climate teleconnections influence on West Africa’s terrestrial water storage. Hydrological Processes, 31(18), 3206–3224.  https://doi.org/10.1002/hyp.11237.
  52. Ndehedehe, C.E., Agutu, N.O., Okwuashi, O. (2018a). Is terrestrial water storage a useful indicator in assessing the impacts of climate variability on crop yield in semi-arid ecosystems? Ecological Indicators, 88C, 51–62.  https://doi.org/10.1016/j.ecolind.2018.01.026.
  53. Ndehedehe, C.E., Awange, J.L., Agutu, N.O., Okwuashi, O. (2018b). Changes in hydro-meteorological conditions over tropical West Africa (1980–2015) and links to global climate. Global and Planetary Change, 162, 321–341.  https://doi.org/10.1016/j.gloplacha.2018.01.020.
  54. Opoku-Duah, S., Donoghue, D., Burt, T.P. (2008). Intercomparison of evapotranspiration over the savannah Volta Basin in West Africa using remote sensing data. Sensors, 8(4), 2736–2761.  https://doi.org/10.3390/s8042736.CrossRefGoogle Scholar
  55. Polhamus, A., Fisher, J.B., Tu, K.P. (2013). What controls the error structure in evapotranspiration models? Agricultural and Forest Meteorology, 169, 12–24.  https://doi.org/10.1016/j.agrformet.2012.10.002.CrossRefGoogle Scholar
  56. Rodell, M., Houser, P.R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, K., Arsenault, C.J., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J.K., Walker, J.P., Lohmann, D., Toll, D. (2004). The global land data assimilation system. Bulletin of American Meteorological Society, 85(3), 381–394.  https://doi.org/10.1175/BAMS-85-3-381.R.CrossRefGoogle Scholar
  57. Schüttemeyer, D., Schillings, C., Moene, A.F., Bruin, H.A.R.D. (2007). Satellite-based actual evapotranspiration over drying semiarid terrain in West Africa. Journal Of Applied Meteorology And Climatology, 46, 97–111.  https://doi.org/10.1175/JAM2444.1.CrossRefGoogle Scholar
  58. Sen, P.K. (1968). Estimates of the regression coefficient based on Kendall’s Tau. Journal of the American Statistical Association, 63(324), 1379–1389.  https://doi.org/10.1080/01621459.1968.10480934.CrossRefGoogle Scholar
  59. Shukla, S., & Wood, A.W. (2008). Use of a standardized runoff index for characterizing hydrologic drought. Geophysical Research Letters, 35(2), L02405.  https://doi.org/10.1029/2007GL032487.CrossRefGoogle Scholar
  60. Song, L., Zhuang, Q., Yin, Y., Zhu, X., Wu, S. (2017). Spatio-temporal dynamics of evapotranspiration on the Tibetan Plateau from 2000 to 2010. Environmental Research Letters, 12(1), 014011.CrossRefGoogle Scholar
  61. Tadesse, T., Senay, G.B., Berhan, G., Regassa, T., Beyene, S. (2015). Evaluating a satellite-based seasonal evapotranspiration product and identifying its relationship with other satellite-derived products and crop yield: a case study for Ethiopia. International Journal of Applied Earth Observation and Geoinformation, 40(Supplement C), 39–54.  https://doi.org/10.1016/j.jag.2015.03.006.CrossRefGoogle Scholar
  62. Tapley, B., Bettadpur, S., Watkins, M., Reigber, C. (2004). The gravity recovery and climate experiment: mission overview and early results. Geophysical Research Letters, 31, 1–4.  https://doi.org/10.1029/2004GL019920.CrossRefGoogle Scholar
  63. Thiemig, V., Rojas, R., Zambrano-Bigiarini, M., Levizzani, V., Roo, A.D. (2012). Validation of satellite-based precipitation products over sparsely gauged African river basins. Journal of Hydrometeorology, 13(6), 1760–1783.CrossRefGoogle Scholar
  64. Wahr, J., Molenaar, M., Bryan, F. (1998). Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. Journal of Geophysical Research-Solid Earth, 103(B12), 30205–30229.  https://doi.org/10.1029/98jb02844.CrossRefGoogle Scholar
  65. Wouters, B., Bonin, J.A., Chambers, D.P., Riva, R.E.M., Sasgen, I., Wahr, J. (2014). GRACE, time-varying gravity, Earth system dynamics and climate change. Reports on Progress in Physics, 77(11), 116801.  https://doi.org/10.1088/0034-4885/77/11/116801.CrossRefGoogle Scholar
  66. Yang, Y., Long, D., Guan, H., Scanlon, B.R., Simmons, C.T., Jiang, L., Xu, X. (2014). GRACE satellite observed hydrological controls on interannual and seasonal variability in surface greenness over mainland Australia. Journal of Geophysical Research: Biogeosciences, 119(12), 2245–2260.  https://doi.org/10.1002/2014JG002670.Google Scholar
  67. Zhou, L., Tian, Y., Myneni, R.B., Ciais, P., Saatchi, S., Liu, Y.Y., Piao, S., Chen, H., Vermote, E.F., Song, C., Hwang, T. (2014). Widespread decline of congo rainforest greenness in the past decade. Nature, 509(7498), 86–90.  https://doi.org/10.1038/nature13265.CrossRefGoogle Scholar
  68. Ziehe, A. (2005). Blind source separation based on joint diagonalization of matrices with applications in biomedical signal processing. PhD thesis, Universit’at Potsdam. Retrieved from: http://en.youscribe.com/catalogue/reports-and-theses/knowledge/blind-source-separation-based-on-joint-diagonalization-of-matrices-1424347 http://en.youscribe.com/catalogue/reports-and-theses/knowledge/blind-source-separation-based-on-joint-diagonalization-of-matrices-1424347. Accessed 15 May 2015.
  69. Zou, M., Niu, J., Kang, S., Li, X., Lu, H. (2017). The contribution of human agricultural activities to increasing evapotranspiration is significantly greater than climate change effect over heihe agricultural region. Scientific Reports, 7 (8805), 1–14.  https://doi.org/10.1038/s41598-017-08952-5.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Australian Rivers InstituteGriffith UniversityNathanAustralia
  2. 2.Griffith School of Environment and ScienceGriffith UniversityNathanAustralia
  3. 3.Department of Spatial SciencesCurtin UniversityPerthAustralia
  4. 4.Department of Geo-Informatics and SurveyingUniversity of UyoUyoNigeria
  5. 5.School of Earth Sciences and EngineeringHohai UniversityNanjingChina

Personalised recommendations