Skip to main content

Advertisement

Log in

Geophysical and hydrological data assimilation to monitor water content dynamics in the rocky unsaturated zone

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In recent years, geophysics is increasingly used to study the flow and transport processes in the vadose zone. Particularly, when the vadose zone is made up of rocks, it is difficult to install sensors in the subsurface to measure hydrological state variables directly. In these cases, the electrical resistivity tomography (ERT) represents a useful tool to monitor the hydrodynamics of the infiltration and to estimate hydraulic parameters and state variables, such as hydraulic conductivity and water content. We propose an integrated approach aimed at predicting water content dynamics in calcarenite, a sedimentary carbonatic porous rock. The uncoupled hydrogeophysical approach proposed consists in 4D ERT monitoring conducted during an infiltrometer test under falling head conditions. Capacitance probes were installed to measure water content at different depths to validate the estimations derived from ERT. A numerical procedure, based on a data assimilation technique, was accomplished by combining the model (i.e., Richards’ equation) with the observations in order to provide reliable water content estimations. We have used a new data assimilation method that is easy to implement, based on the ensemble Kalman filter coupled with Brownian bridges. This approach is particularly suitable for strongly non-linear models, such as Richards’ equation, in order to take into account both the model uncertainty and the observation errors. The proposed data assimilation approach was tested for the first time on field data. A reasonable agreement was found between observations and predictions confirming the ability of the integrated approach to predict water content dynamics in the rocky subsoil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Archie, G. E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, 146, 54–62. https://doi.org/10.2118/942054-G.

    Google Scholar 

  • Barca, E., Castrignanò, A., Buttafuoco, G., De Benedetto, D., & Passarella, G. (2015). Integration of electromagnetic induction sensor data in soil sampling scheme optimization using simulated annealing. Environmental monitoring and assessment., 187, 422. https://doi.org/10.1007/s10661-015-4570-y.

    Article  CAS  Google Scholar 

  • Berardi, M., Andrisani, A., Lopez, L., & Vurro, M. (2016). A new data assimilation technique based on ensemble Kalman filter and Brownian bridges: an application to Richards’ equation. Computer Physics Communications, 208, 43–53. https://doi.org/10.1016/j.cpc.2016.07.025.

    Article  CAS  Google Scholar 

  • Berardi, M., Difonzo, F., Vurro, M., & Lopez, L. (2018). The 1D Richards’ equation in two layered soils: a Filippov approach to treat discontinuities. Advances in Water Resources, 115, 264–272. https://doi.org/10.1016/j.advwatres.2017.09.027.

    Article  Google Scholar 

  • Berardi, M., & Vurro, M. (2016). The numerical solution of Richards’ equation by means of method of lines and ensemble Kalman filter. Mathematics and Computers in Simulation, 125, 38–47. https://doi.org/10.1016/j.matcom.2015.08.019.

    Article  Google Scholar 

  • Berardi, M., Andrisani, A., Lopez, L., & Vurro, M. (2015). A new data assimilation technique based on EnKF and Brownian bridges in the context of Richards equation. In: Delgado R.T. et al. (eds.) (pp.740–744.) Proc. 17th IAMG Conference, Freiberg, Germany. 5–12 September 2015.

  • Bergamaschi, L., & Putti, M. (1999). Mixed finite elements and Newton-type linearizations for the solution of Richards’ equation. International Journal for Numerical Methods in Engineering, 45, 1025–1046. https://doi.org/10.1002/(SICI)1097-0207(19990720)45:8<1025::AID-NME615>3.0.CO;2-G.

    Article  Google Scholar 

  • Binley, A., Hubbard, S. S., Huisman, J. A., Revil, A., Robinson, D. A., Singha, K., & Slater, L. D. (2015). The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resources Research, 51, 3837–3866. https://doi.org/10.1002/2015WR017016.

    Article  Google Scholar 

  • Binley, A., & Kemna, A. (2005). DC resistivity and induced polarization methods. In: Y. Rubin and S.S. Hubbard (eds). Hydrogeophysics. (pp:129–156) Springer.

  • Burgess, P. J., Reinhard, B. R., & Pasturel, P. (2006). Compatible measurements of volumetric soil water content using a neutron probe and Diviner 2000 after field calibration. Soil Use Manage. https://doi.org/10.1111/j.1475-2743.2006.00060.x.

  • Camporese, M., Cassiani, G., Deiana, R., Salandin, P., & Binley, A. (2015). Coupled and uncoupled hydrogeophysical inversions using ensemble Kalman filter assimilation of ERT-monitored tracer test data. Water Resources Research, 51, 3277–3291. https://doi.org/10.1002/2014WR016017.

    Article  Google Scholar 

  • Camporese, M., Cassiani, G., Deiana, R., & Salandin, P. (2011). Assessment of local hydraulic properties from electrical resistivity tomography monitoring of a three-dimensional synthetic tracer test experiment. Water Resources Research. https://doi.org/10.1029/2011WR010528.

  • Camporese, M., Paniconi, C., Putti, M., & Salandin, P. (2009). Comparison of data assimilation techniques for a coupled model of surface and subsurface flow. Vadose Zone Journal, 8. https://doi.org/10.2136/vzj2009.0018.

  • Caputo, M. C., Masciale, R., & Barca, E. (2013). Calibration of a novel impedance sensor for water content measurement in rock. Vadose Zone Journal. https://doi.org/10.2136/vzj2013.01.0024.

  • Caputo, M. C., De Carlo, L., Masciopinto, C., & Nimmo, J. R. (2010). Measurement of field-saturated hydraulic conductivity on fractured rock outcrops near Altamura (southern Italy) with an adjustable large ring infiltrometer. Environment and Earth Science, 60, 583–590. https://doi.org/10.1007/s12665-009-0198-y.

    Article  Google Scholar 

  • Caputo, M. C., & Nimmo, J. R. (2005). Quasi-steady centrifuge method for unsaturated hydraulic properties. Water Resources Research. https://doi.org/10.1029/2005WR003957.

  • Cassiani, G., Bruno, V., Villa, A., Fusi, N., & Binley, A. M. (2006). A saline trace test monitored via time-lapse surface electrical resistivity tomography. Journal of Applied Geophysics, 79, 6–16. https://doi.org/10.1016/j.jappgeo.2011.12.011.

    Google Scholar 

  • Castiglione, P., Shouse, P. J., Mohanty, B., Hudson, D., & van Genucthen, M. T. (2005). Improved tension Infiltrometer for measuring low flow rates in unsaturated fractured rock. Vadose Zone Journal. https://doi.org/10.2136/vzj2004.0135.

  • Celia, M. A., Bououtas, E. T., & Zarba, R. L. (1990). A general mass-conservative numerical solution for the unsaturated flow equation. Water Resources Research, 26, 1483–1496. https://doi.org/10.1029/WR026i007p01483.

    Article  Google Scholar 

  • Chirico, G. B., Medina, H., & Romano, N. (2014). Kalman filters for assimilating near-surface observations into the Richards equation—part 1: retrieving state proles with linear and nonlinear numerical schemes. Hydrology and Earth System Sciences, 18, 2503–2520. https://doi.org/10.5194/hess-18-2503-2014.

    Article  Google Scholar 

  • Crestani, E., Camporese, M., Baù, D., & Salandin, P. (2013). Ensemble Kalman filter versus ensemble smoother for assessing hydraulic conductivity via tracer test data assimilation. Hydrology and Earth System Sciences, 17, 1517–1531. https://doi.org/10.5194/hess-17-1517-2013.

    Article  Google Scholar 

  • Daily, W., Ramirez, A., LaBrecque, D., & Nitao, J. (1992). Electrical resistivity tomography of vadose water movement. Water Resources Research, 28, 1429–1442. https://doi.org/10.1029/91WR03087.

    Article  Google Scholar 

  • Das, N. N., & Mohanty, B. P. (2006). Root zone soil moisture assessment using remote sensing and vadose zone modeling. Vadose Zone Journal, 5. https://doi.org/10.2136/vzj2005.0033.

  • Deiana, R., Cassiani, G., Villa, A., Bagliani, A., & Bruno, V. (2008). Model calibration of a water injection test in the vadose zone of the Po River plain using GPR cross-hole data. Vadose Zone Journal. https://doi.org/10.2136/vzj2006.0137.

  • de Lannoy, G. J. M., Reichle, R. H., Houser, P. R., Pauwels, V. R. N., & Verhoest, N. E. C. (2007). Correcting for forecast bias in soil moisture assimilation with the ensemble Kalman filter. Water Resources Research. https://doi.org/10.1029/2006WR005449.

  • Elrick, D. E., Reynolds, W. D., & Tan, K. A. (1989). Hydraulic conductivity measurements in the unsaturated zone using improved well analyses. Ground Water Monitoring Review, 9, 184–193. https://doi.org/10.1111/j.1745-6592.1989.tb01162.x.

    Article  Google Scholar 

  • Evensen, G. (2003). The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dynamics, 53, 343–367. https://doi.org/10.1007/s10236-003-0036-9.

    Article  Google Scholar 

  • Evett, S. R., Tolk, J. A., & Howell, T. A. (2006). Soil profile water content determination: sensor accuracy, axial response, calibration, temperature dependence, and precision. Vadose Zone Journal. https://doi.org/10.2136/vzj2005.0149.

  • Hayley, K., Bentley, L. R., Gharibi, M., & Nightingale, M. (2007). Low temperature dependence of electrical resistivity: implications for near surface geophysical monitoring. Geophysical Research Letters. https://doi.org/10.1029/2007GL031124.

  • Hills, R. G., Porro, I., Hudson, D. B., & Wierenga, P. J. (1989). Modeling one-dimensional infiltration into very dry soils: 1. Model development and evaluation. Water Resources Research, 25, 1259–1269. https://doi.org/10.1029/WR025i006p01259.

    Article  CAS  Google Scholar 

  • Hinnell, A. C., Ferré, T. P. A., Vrugt, J. A., Huisman, J. A., Moysey, S., Rings, J., & Kowalsky, M. B. (2010). Improved extraction of hydrologic information from geophysical data through coupled hydrogeophysical inversion. Water Resources Research. https://doi.org/10.1029/2008WR007060.

  • Huisman, J. A., Rings, J., Vrugt, J. A., Sorg, J., & Vereecken, H. (2010). Hydraulic properties of a model dike from coupled Bayesian and multi-criteria hydrogeophysical inversion. Journal of Hydrology, 380, 62–73. https://doi.org/10.1016/j.jhydrol.2009.10.023.

    Article  Google Scholar 

  • Jardani, A., Revil, A., & Dupont, J. P. (2013). Stochastic joint inversion of hydrogeophysical data for salt tracer test monitoring and hydraulic conductivity imaging. Advances in Water Resources, 52, 62–77. https://doi.org/10.1016/j.advwatres.2012.08.005.

    Article  Google Scholar 

  • Kemna, A., Vanderborght, J., Kulessa, B., & Vereecken, H. (2002). Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. Journal of Hydrology, 267, 125–146. https://doi.org/10.1016/S0022-1694(02)00145-2.

    Article  CAS  Google Scholar 

  • Kowalsky, M. B., Finsterle, S., Peterson, J., Hubbard, S., Rubin, Y., Majer, E., Ward, A., & Gee, G. (2005). Estimation of field-scale soil hydraulic and dielectric parameters through joint inversion of GPR and hydrological data. Water Resources Research. https://doi.org/10.1029/2005WR004237.

  • Leeds-Harrison, P. B., Youngs, E. G., & Uddin, B. (1996). A device for determining the sorptivity of soil aggregates. European Journal of Soil Science, 45, 269–272. https://doi.org/10.1111/j.1365-2389.1994.tb00509.x.

    Article  Google Scholar 

  • Lehikoinen, A., Finsterle, S., Voutilainen, A., Kowalsky, M.B., & Kaipio, J.P. (2009). Dynamical inversion of geophysical ERT data: state estimation in the vadose zone. Inverse Problems in Science and Engineering doi: https://doi.org/10.1080/17415970802475951, 17, 715, 736.

  • Lehikoinen, A., Huttunen, J. M. J., Finsterle, S., Kowalsky, M. B., & Kaipio, J. P. (2010). Dynamic inversion for hydrological process monitoring with electrical resistance tomography under model uncertainties. Water Resources Research. https://doi.org/10.1029/2009WR008470.

  • Lehmann, F., & Ackerer, P. H. (1998). Comparison of iterative methods for improved solutions of the fluid flow equation in partially saturated porous media. Transport in Porous Media., 31, 275–292. https://doi.org/10.1023/A:1006555107450.

    Article  Google Scholar 

  • Linde, N., Chen, J., Kowalsky, M.B., & Hubbard, S.S. (2006). Hydrogeophysical parameter estimation approaches for field scale characterization. In: H. Vereecken et al. (eds.) Applied hydrogeophysics (pp. 9–44). Springer.

  • List, F., & Radu, F. A. (2016). A study on iterative methods for solving Richards’ equation. Computational Geosciences, 20, 341–353. https://doi.org/10.1007/s10596-016-9566-3.

    Article  Google Scholar 

  • Mackanzie, D. (2003). Ensemble Kalman filters bring weather models up to date. SIAM News, 36, 8.

    Google Scholar 

  • Masbrucha, K., & Ferré, T. P. A. (2003). A time domain transmission method for determining the dependence of the dielectric permittivity on volumetric water content. An Application to Municipal Landfills. Vadose Zone Journal. https://doi.org/10.2136/vzj2003.1860.

  • Masciopinto, C., & Caputo, M. C. (2011). Modeling unsaturated–saturated flow and nickel transport in fractured rocks. Vadose Zone Journal. https://doi.org/10.2136/vzj2010.0087.

  • Mboh, C. M., Huisman, J. A., Van Gaelen, N., Rings, J., Sorg, J., & Vereecken, H. (2012). Coupled hydrogeophysical inversion of electrical resistances and inflow measurements for topsoil hydraulic properties under constant head infiltration. Near Surface Geophysics. https://doi.org/10.3997/1873-0604.2012009.

  • Medina, H., Romano, N., & Chirico, G. B. (2014a). Kalman filters for assimilating near-surface observations into the Richards equation—part 2: a dual filter approach for simultaneous retrieval of states and parameters. Hydrology and Earth System Sciences, 18, 2521–2541. https://doi.org/10.5194/hess-18-2521-2014.

    Article  Google Scholar 

  • Medina, H., Romano, N., & Chirico, G. B. (2014b). Kalman filters for assimilating near-surface observations into the Richards equation—part 3: retrieving states and parameters from laboratory evaporation experiments. Hydrology and Earth System Sciences, 18, 2543–2557. https://doi.org/10.5194/hess-18-2543-2014.

    Article  Google Scholar 

  • Montzka, C., Moradkhani, H., Weihermuller, L., Hendricks Franssen, H. J., Canty, M., & Vereecken, H. (2011). Hydraulic parameter estimation by remotely-sensed top soil moisture observations with the particle filter. Journal of Hydrology, 399, 410–421. https://doi.org/10.1016/j.jhydrol.2011.01.020.

    Article  Google Scholar 

  • Morelli, G., & LaBrecque, D. J. (1996). Advances in ERT inverse modelling. European Journal of Environmental and Engineering Geophysical Society, 1, 171–177. https://doi.org/10.4133/JEEG1.3.171.

    Article  Google Scholar 

  • Nimmo, J.R., Schmidt, K.S., Perkins, K.S, & Stock, J.D. (2009). Rapid measurement of field-saturated hydraulic conductivity for areal characterization. Vadose Zone Journal doi:https://doi.org/10.2136/vzj2007.0159, 8.

  • Pollock, D., & Cirpka, O. A. (2010). Fully coupled hydrogeophysical inversion of synthetic salt tracer experiments. Water Resources Research, 46. https://doi.org/10.1029/2009WR008575.

  • Pop, I. S., Radu, F., & Knabner, P. (2004). Mixed finite elements for the Richards’ equation: linearization procedure. Journal of Computational and Applied Mathematics, 168, 365–373. https://doi.org/10.1016/j.cam.2003.04.008.

    Article  Google Scholar 

  • Reichle, R. H., McLaughlin, D. B., & Entekhabi, D. (2002). Hydrologic data assimilation with the ensemble Kalman filter. Monthly Weather Review, 130, 103–114. https://doi.org/10.1175/1520-0493(2002)130<0103:HDAWTE>2.0.CO;2.

    Article  Google Scholar 

  • Reynolds, W.D., Elrick, D.E. & Young, E.G. (2002). Ring or cylinder infiltrometers (vadose zone). In: J.K. Dane, G.C. Topp (Eds.) Method of soil analysis. (pp. 818–826) Soil Science Society of America, Inc.

  • Reynolds, W. D., & Elrick, D. E. (1990). Ponded infiltration from a single ring: I. Analysis of steady flow. Soil Science Society of America Journal. https://doi.org/10.2136/sssaj1990.03615995005400050006x.

  • Rings, J., Huisman, J. A., & Vereecken, H. (2010). Coupled hydrogeophysical parameter estimation using a sequential Bayesian approach. Hydrology and Earth System Sciences. https://doi.org/10.5194/hess-14-545-2010.

  • Robinson, D. A., Binley, A., Crook, N., Day-Lewis, F. D., Ferrè, T. P. A., Grauch, J. S., Knight, R., Knoll, M., Laksmi, V., Miller, R., Nyquist, J., Pellerin, L., Singha, K., & Slater, L. (2008). Advancing process-based watershed hydrological research using near-surface geophysics: a vision for, and review of, electrical and magnetic geophysical methods. Hydrological Processes, 22, 3604–3635. https://doi.org/10.1002/hyp.6963.

    Article  Google Scholar 

  • Rossi, M., Manoli, G., Pasetto, D., Deiana, R., Ferraris, S., Strobbia, C., Putti, M., & Cassiani, G. (2015). Coupled inverse modeling of a controlled irrigation experiment using multiple hydro-geophysical data. Advances in Water Resources, 82, 150–165. https://doi.org/10.1016/j.advwatres.2015.03.008.

    Article  Google Scholar 

  • Sentek Pty Ltd. (2007). Diviner 2000 user guide version 1.4. South Australia: Stepney.

    Google Scholar 

  • Stephens, D. B. (1996). Vadose Zone Hydrology. Florida: Boca Raton.

    Google Scholar 

  • Sudicky, E. A. (1986). A natural gradient experiment on solute transport in a sand aquifer: spatial variability of hydraulic conductivity and its role in the dispersion process. Water Resources Research, 22, 2069–2082. https://doi.org/10.1029/WR022i013p02069.

    Article  CAS  Google Scholar 

  • Tocci, M. D., & Kelley, C. T. (1997). Accurate and economical solution of the pressure-head form of Richards’ equation by the method of lines. Advances in Water Resources, 20, 1–14. https://doi.org/10.1016/S0309-1708(96)00008-5.

    Article  Google Scholar 

  • Wendroth, O., Reuter, H. I., & Kersebaum, K. C. (2003). Predicting yield of barley across a landscape: a state-space modeling approach. Journal of Hydrology, 272, 250–263. https://doi.org/10.1016/S0022-1694(02)00269-X.

    Article  Google Scholar 

  • Yeh, T.-C. J., Liu, S., Glass, R. J., Baker, K., Brainard, J. R., Alumbaugh, D., & LaBrecque, D. (2002). A geostatistically based inverse model for electrical resistivity surveys and its applications to vadose zone hydrology. Water Resources Research, 38, 14-1–14-13. https://doi.org/10.1029/2001WR001204.

    Article  Google Scholar 

  • Youngs, E. G., Spoor, G., & Goodall, G. R. (1996). Infiltration from surface ponds into soils overlying a very permeable substratum. Journal of Hydrology, 186, 327–334. https://doi.org/10.1016/S0022-1694(96)03019-3.

    Article  Google Scholar 

  • Zadeh, K. S. (2008). Parameter estimation in ow through partially saturated porous materials. Journal of Computational Physics, 227, 10243–10262. https://doi.org/10.1016/j.jcp.2008.09.007.

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Rita Masciale, CNR-IRSA, for support in field activity and for help in the editing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo De Carlo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Carlo, L., Berardi, M., Vurro, M. et al. Geophysical and hydrological data assimilation to monitor water content dynamics in the rocky unsaturated zone. Environ Monit Assess 190, 310 (2018). https://doi.org/10.1007/s10661-018-6671-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6671-x

Keywords

Navigation