Advertisement

Heavy metal bioaccumulation in Oreochromis niloticus from Tenango Dam, Puebla, Mexico

  • Mario Alejandro Muñoz-Nájera
  • Guadalupe Barrera-Escorcia
  • Patricia Ramírez-Romero
  • Felipe Omar Tapia-Silva
  • Ricardo Rosas-Cedillo
Article
  • 160 Downloads

Abstract

Oreochromis niloticus was used to determine the effects of heavy metals and their concentration in aquatic environments. Its wide distribution, resistance, and economical importance make it a suitable biomonitor. The present study was conducted in the Tenango Dam (Puebla, Mexico) to determine water quality and its impact on O. niloticus, a species that is cultured and commercialized in this area. Five samples were collected over 1 year to evaluate the water’s physicochemical parameters (temperature, dissolved oxygen, pH, and hardness) and metal contents (cadmium, chromium, copper, and lead). Metal concentrations, bioconcentration factors, and metallothionein levels were also assessed in O. niloticus livers and muscle tissues. Water and tilapia quality were estimated according to current Mexican guidelines. Results indicated that the water’s physicochemical parameters were within acceptable ranges. Metal concentrations, however, suggested that this resource was not suitable for urban use. Moreover, metal levels in fish tissues exceeded the acceptable limits during two periods, rendering it unsuitable for human consumption. The bioconcentration factor indicated that the metals can potentially accumulate in organisms. Furthermore, metallothionein levels in liver and muscle showed a direct correlation with metal concentrations in these tissues. This is the first study to use tilapia as an indicator of contamination in the Tenango Dam, and also the first to describe the presence of metals in this water body.

Keywords

Oreochromis niloticus Metals Bioconcentration Metallothioneins 

Notes

Acknowledgements

This research was sponsored by the Indicadores de integridad ecológica y salud ambiental 2014-2018 project, from the Universidad Autónoma Metropolitana (UAM). These results are linked with the UAM Biological and health sciences PhD, part of the Census of Quality Postgraduate Program supported by CONACYT, Mexico. We would like to thank Dr. Héctor Barrera Villa Zevallos for reviewing this manuscript.

References

  1. Abbas, H. H. H., Hammada, M. M., & Miller, J. D. (2007). Vitamin C and cadmium toxicity in fish Oreochromis niloticus. Online Journal of Veterinary Research, 11(1), 54–74.Google Scholar
  2. Abdel-Baki, A. S., Dkhil, M. A., & Al-Quraishy, S. (2011). Bioaccumulation of some heavy metals in tilapia fish relevant to their concentration in water and sediment of Wadi Hanifah, Saudi Arabia. African Journal of Biotechnology, 10(13), 2541–2547.Google Scholar
  3. Abdulali, K. A., Shuhaimi-Othman, M., & Ahmad, A. K. (2012). Analysis of heavy metal concentrations in Tilapia fish (oreochromis niloticus) from four selected markets in Selangor, Peninsular Malaysia. Journal of Biological Sciences, 12(3), 138–145.CrossRefGoogle Scholar
  4. Ackermann, C. (2008). A quantitative and qualitative histological assessment of selected organs of Oreochromis mossambicus after acute exposure to cadmium, chromium and nickel. M. Sc. dissertation, University of Johannesburg, South Africa.Google Scholar
  5. Adazabra, A. N., Kombat, E. O., & Fletcher, J. J. (2014). Parameterization of non-essential heavy metals concentration in different tissues of inland commercial fish Oreochromis niloticus from Vea Dam, Bolgatanga, Northern Ghana. International Journal of Current Research and Academic Review, 2(7), 247–258.Google Scholar
  6. APHA. (1992). Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association.Google Scholar
  7. Arillo, A., & Melodio, F. (1988). Effects of hexavalent chromium on trout mitochondria. Toxicology Letters, 44, 71–76.CrossRefGoogle Scholar
  8. Atli, G., & Canli, M. (2003). Natural occurrence of metallothionein-like protein in liver of fish Orechromis niloticus and effects of cadmium, lead, copper, zinc, and iron exposures on their profiles. Bulletin of Environmental Contamination and Toxicology, 70, 619–627.CrossRefGoogle Scholar
  9. Authman, M. M. N. (2008). Orechromis niloticus as a biomonitor of heavy metal pollution with emphasis on potential risk and relation to some biological aspects. Global. Veterinária, 2(3), 104–109.Google Scholar
  10. Badii, Z. M. H., Garza, C. R., Garza, A. V., & Landeros, F. J. (2005). Los indicadores biológicos en la evaluación de la contaminación por agroquímicos en ecosistemas acuáticos y asociados. Cultura, Ciencia y Tecnología, 2(6), 1–20.Google Scholar
  11. Borgmann, U. (2000). Methods for assessing the toxicological significance of metals in aquatic ecosystems: bioaccumulation-toxicity relationships water concentrations and sediment spiking approaches. Aquatic Ecosystem Health and Management, 3, 277–289.Google Scholar
  12. Canli, M., & Atli, G. (2003). The relationships between heavy metals (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species. Environmental Pollution, 121(1), 129–136.CrossRefGoogle Scholar
  13. Cerón-Carpio, A. B., Contreras-Jiménez, J. L., & Gante-Cabrera, V. H. (2012). Inventario Pteridoflorístico del área de protección de recursos naturales “Cuenca hidrográfica del río Necaxa”, porción puebla, Mexico. Mexico: CONAGUA.Google Scholar
  14. Chandrasekera, L. W. H. U., Pathiratne, A., & Pathiratne, K. A. S. (2008). Effects of water borne cadmium on biomarker enzymes and metallothioneins in Nile tilapia, Oreochromis niloticus. Journal of the National Science Foundation of Sri Lanka, 36(4), 315–322.CrossRefGoogle Scholar
  15. Chatterjee, S., Datta, S., Das, T. K., Veer, V., Mishra, D., Chakraborty, A., Chattopadhyay, B., Datta, S., Mukhopadhyay, K. S., & Gupta, K. D. (2016). Metal accumulation and metallothionein induction in Orechromis niloticus grown in waster fed fishponds. Ecological Engineering, 90(16), 405–416.CrossRefGoogle Scholar
  16. Chovanec, A., Schiemer, F., Cabela, A., Gressler, S., Grotzer, C., Pascher, K., Raab, R., Teufl, H., & Wimmer, R. (2000). Constructed inshore zones as river corridors through urban areas—the Danube in Vienna: preliminary results. Regulated Rivers: Research & Management, 16, 175–187.CrossRefGoogle Scholar
  17. Comisión Nacional del Agua (CNA). (2016). Ley federal de derechos. Disposiciones aplicables en materia de aguas nacionales. México: Diario Oficial de la Federación, México.Google Scholar
  18. Cowx, I. G., & Collares-Pereira, M. J. (2002). Freshwater fish conservation: options for the future. In M. J. Collares-Pereira, I. G. Cowx, & M. M. Coehlo (Eds.), Conservation of freshwater fishes: options for the future (pp. 443–452). Oxford: Fishing News Books.Google Scholar
  19. Dyk, J. C. V., Pieterse, G. M., & Van Vuren, J. H. J. (2007). Histological changes in the liver of Oreochromis mossambicus (Cichlidae) after exposure to cadmium and zinc. Ecotoxicology and Environmental Safety, 66, 432–440.CrossRefGoogle Scholar
  20. Ekpo, F. E., Agu, N. N., & Udoakpan, U. I. (2013). Influence of heavy metals concentration in three common fish, sediment and water collected within quarry environment, Akamkpa L. G. area, Cross river State, Nigeria. European Journal of Toxicological Sciences, 3, 1–11.Google Scholar
  21. El-Badawi, A. A. (2005). Effect of lead toxicity on some physiological aspects of Nile tilapia fish, Oreochromis niloticus. International Conferences of the Veterinary Research Division. Cairo, Egypt: NRC.Google Scholar
  22. El-Sayed, M. Y., Abdel-Wahab, M. W., Nasser, A., Hossam, E., & Mohamed, M. (2013). Histological changes in the liver and intestine of Nile Tilapia, Orechromis niloticus, exposed to sub lethal concentrations of cadmium. Pakistan Journal of Zoology, 45(3), 833–841.Google Scholar
  23. EPA Method 3015. (1995). Microwave assisted acid digestion of aqueous sample an extract. https://www.epa.gov/sites/production/files/2015-12/documents/3015a.pdf. Accessed on January 15, 2016.
  24. Ercal, N., Gurer-Orhan, H., & Aykin-Burns, N. (2001). Toxic metals and oxidative stress Part I: Mechanisms involved in metal-induced oxidative damage. Current Topics in Medicinal Chemistry, 1, 529–539.CrossRefGoogle Scholar
  25. Essa, H. H., & Rateb, H. Z. (2011). Residues of some heavy metals in freshwater fish (Oreochromis niloticus and Labeo niloticus) in assiut city markets. Assiut University Bulletin for Environmental, 14(1), 31–39.Google Scholar
  26. Evans, D. W., Dodoo, D. K., & Hanson, P. J. (1993). Trace elements concentrations in fish livers implications of variations with fish size in pollution monitoring. Marine Pollution Bulletin, 26(6), 329–334.CrossRefGoogle Scholar
  27. Flores, T. F. J., Flores, P. L., Valenzuela, C. I. C., & Flores, S. E. A. (2010). Lixiviados de biosólidos sobre la biota dulceacuícola. Investigación y Ciencia, 18(48), 38–48.Google Scholar
  28. Francis, O., & Faith, B. (2016). Fish tissue bio-concentration and interspecies uptake of heavy metals from waste water lagoons. Journal of pollution Effects & Control, 4, 157.  https://doi.org/10.4172/2375-4397.1000157.Google Scholar
  29. Fuentes, F., & Massol, A. (2002). Manual de laboratorios: ecología de microorganismos. Puerto Rico: Universidad de Puerto Rico.Google Scholar
  30. Gold-Bouchot, G., Zapata-Pérez, O., Rodríguez-Fuentes, G., Ceja-Moreno, V., Rio-García, M., & Chan-Cocom, E. (2006). Biomarkers and pollutants in the Nile Tilapia, Orechromis niloticus, in four lakes from San Miguel, Chiapas, Mexico. International Journal of Environment and Pollution, 26(1-3), 129–141.CrossRefGoogle Scholar
  31. González-Ramírez, C. A., Prieto-García, F., Prieto-Méndez, J., & Román- Gutiérrez, A. D. (2009). Contaminación y fitotoxicidad en plantas por metales pesados provenientes de suelos y agua. Tropical and Subtropical. Agroecosystems, without month, pp. 29-44.Google Scholar
  32. Grossel, M., & Wood, C. M. (2002). Copper uptake across rainbow trout gills: mechanisms of apical entry. Journal of Experimental Biology, 205, 1179–1188.Google Scholar
  33. Gülüzar, A., & Canli, M. (2008). Responses of metallothionein and reduced glutathione in a freshwater fish Oreochromis niloticus following metal exposures. Environmental Toxicology and Pharmacology, 25, 33–38.CrossRefGoogle Scholar
  34. Hauser-Davis, R. A., Bastos, F. F., Tuton, B., Chávez, R. R., Saint, P. T., Ziolli, L. R., & Arruda, M. A. Z. (2014). Bile and liver metallothionein behavior in copper-exposed fish. Journal of Trace Elements in Medicine and Biology, 28, 70–74.CrossRefGoogle Scholar
  35. INE-UACH. (2007). Estudio de Ordenamiento Ecológico Territorial de las Cuencas Hidrológicas de los ríos Necaxa y Laxaxalpa. https://www.agua.org.mx/biblioteca-tematica/manejo-de-cuencas/95--sp-942/676-ordenamiento-de-las-cuencas-de-los-rios-necaxa-y-laxaxalpa. Accessed on May 15, 2017.
  36. Ishaq, S. E., Rufus, S. A., & Annune, P. A. (2011). Bioaccumulation of heavy metals in fish (Tilapia Zilli and Clarias gariepinus) organs from river Benue, North-Central Nigeria. Pakistan Journal of Analytical & Environmental Chemistry, 12(1&2), 1–37.Google Scholar
  37. Legislación brasileña de metales pesados (LBMP). (2017). Metales pesados en materia de alimentos. http://paguicidas.comercio/MetalPesado.pdf. Accessed on May 15, 2017
  38. Lim, L. K., Wai, K. P., Ka-Yee, J., & Ming, C. K. (1998). Metal toxicity and metallothionein gene expression studies in common carp and tilapia. Marine Environmental Research, 46(1-5), 563–566.CrossRefGoogle Scholar
  39. Lozada-Zarate, E. J., Monks, S., Pulido-Flores, G., Gordillo-Martínez, A. J., & Prieto-García, F. (2006). Determinación de metales pesados en Cyprinus en la laguna de Metztitlan, Hidalgo, México. https://www.uaeh.edu.mx/investigacion/icbi/LI_Helmintos/Griselda_Pulido/Lozada-Zarate-2006a.pdf. Accessed on May 15, 2017.
  40. Mencías, R. E., & Mayero, F. L. M. (2000). Manual de toxicología básica. Madrid: Díaz de Santos. Madrid.Google Scholar
  41. Mohamed, E. H., & Osman, A. R. (2014). Heavy metals concentration in water, muscles and gills of Orechromis niloticus collected from the sewage-treated water and the White Nile. International Journal of Aquaculture, 4(6), 36–42.Google Scholar
  42. Moreno, G. M. D. (2003). Toxicología ambiental. México: Mc Graw Hill.Google Scholar
  43. Mostafa, M. E., Rabie, S. F., Aida, A. D., & Mohammad, F. (2015). Assessment of heavy metals concentration in water and edible tissues of Nile tilapia (Oreochromis niloticus) from two fish farms irrigated with different water sources, Egypt. International Journal of Environment, 4(1), 108–115.Google Scholar
  44. Mulu, B. D., & Mehari, M. W. (2013). Distribution of trace metals in two commercially important fish species (Tilapia zilli and Oreochromis niloticus) sediment and wáter from Lake Gubdahri, Eastern Tigrar of Northern Ethiopia. International Journal of Scientific and Research Publications, 3(9), 1–7.Google Scholar
  45. Nelson, J. S. (1994). Fishes of the world. New York: John Wiley and Sons.Google Scholar
  46. Oberdorff, T., Pont, D., Hugueny, B., & Porcher, J. P. (2002). Development and validation of a fish-based index for the assessment of ‘river health’ in France. Freshwater Biology, 47, 1720–1734.CrossRefGoogle Scholar
  47. Obregón, A., & Duván, A. (2006). Limnología aplicada a la acuicultura. Revista Veterinaria REDVET, 7(11), 1–24.Google Scholar
  48. Osman, A. G. (2012). Biomarkers in Nile tilapia Orechromis niloticus (Linnaeus, 1758) to assess the impacts of river Nile pollution: bioaccumulation, biochemical and tissues biomarkers. Journal of Environmental Protection, 3, 966–977.CrossRefGoogle Scholar
  49. Phillips, D. H., & Segar, D. A. (1986). Use of bio-indicators in monitoring conservative contaminants: program design imperatives. Marine Pollution Bulletin, 17, 10–17.CrossRefGoogle Scholar
  50. Ramos, O., Guevara, N., Macías, B., & Ortiz, Y. (2004). Evaluación de riesgo a la salud por la presencia de metales pesados en pescado. Toxicología, 1, 2–4.Google Scholar
  51. Roesijadi, G. (1992). Metallothioneins in metal regulation and toxicity in aquatic animals. Aquatic Toxicology, 22(2), 81–114.CrossRefGoogle Scholar
  52. Saavedra, M. A. (2006). Manejo del cultivo de tilapia. Nicaragua: CIDEA-Coastal Resources Center.Google Scholar
  53. Scheuhammer, A. M., & Cherian, M. G. (1986). Quantification of metallothionein by silver saturation methods. Toxicology and Applied Phamarcology, 82(3), 417–425.CrossRefGoogle Scholar
  54. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimento (SAGARPA). (2006). Manual de producción de tilapia con especificaciones de calidad e inocuidad. México: SAGARPA.Google Scholar
  55. Secretaria de Economía. (2001). NMX-AA-051-SCFI-2001. Determinación de metales por absorción atómica en aguas naturales, potables, residuales y residuales tratadas. México: Diario Oficial de la Federación.Google Scholar
  56. Secretaria de Salud. (2011). NOM-242-SSA1-2009. Productos y servicios. Productos de la pesca frescos, refrigerados, congelados y procesados. Especificaciones sanitarias y métodos de prueba. México: Diario Oficial de la Federación.Google Scholar
  57. Shiau, S. Y., & Ning, Y. C. (2003). Estimation of dietary copper requirements of juvenile tilapia, Oreochromis niloticus x O. aureus. Journal of Animal Science, 77, 287–292.Google Scholar
  58. Sokal, R. R., & Rohlf, F. J. (2012). Biometry: the principles and practice of statistics in biological research. New York: W. H. Freeman and Co..Google Scholar
  59. Valle, V. P. (2000). Toxicología de Alimentos. México: Instituto Nacional de Salud Pública.Google Scholar
  60. Vinodhini, R., & Narayanan, M. (2008). Bioaccumulations of heavy metals in organs of fresh water fish Cyprinus carpio (Common carp). International journal of Environmental Science and Technology, 5, 179–182.CrossRefGoogle Scholar
  61. Wichert, G. A., & Rapport, D. J. (1998). Fish community structure as a measure of degradation and rehabilitation of riparian systems in an agricultural drainage basin. Environmental Management, 22, 425–443.CrossRefGoogle Scholar
  62. Zapata-Pérez, O., Sima - Álvarez, R., Noreña-Barroso, E., Guemes, J., Gold-Bouchot, G., Ortega, A., & Albores-Medina, A. (2000). Toxicity of sediments from Bahia de Chetumal, Mexico, as assessed by hepatic EROD induction and histology in Nile Tilapia Oreochromis niloticus. Marine Environmental Research, 50(1-5), 385–391.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universidad Autónoma Metropolitana – IztapalapaIztapalapaMexico
  2. 2.Department of HydrobiologyUniversidad Autónoma Metropolitana – Unidad IztapalapaIztapalapaMexico
  3. 3.Department of Hydraulic and Process EngineeringUniversidad Autónoma Metropolitana – Unidad IztapalapaIztapalapaMexico

Personalised recommendations