Granulometric and pebble morphometric applications to Benin Flank sediments in western Anambra Basin, Nigeria: proxies for paleoenvironmental reconstruction

  • Azuka Ocheli
  • Anthony Uwaoma Okoro
  • Ovie Benjamin Ogbe
  • Godwin Okumagbe Aigbadon
Article
  • 14 Downloads

Abstract

Integrated granulometric and pebble morphometric study of Late Cretaceous rocks of the Benin Flank, Nigeria, were used to delineate depositional process and environment of the rocks in the study area. Granulometric analysis reveals that the sandstones of the Lokoja Bassange Formation have an average graphic mean (Mz) of 0.59Φ (coarse grains), inclusive graphic standard deviation (δi) of 1.36Φ (poorly sorted), graphic kurtosis (Ka) of 1.12Φ (leptokurtic), and inclusive graphic skewness (Ski) of − 0.14Φ (stongly coarse skewed). The sandstones for the Mamu Formation have an average Mz of 1.42Φ (medium grains), inclusive graphic standard deviation (δi) of 0.74Φ (moderately sorted), graphic kurtosis (Ka) of 1.43Φ (leptokurtic), and inclusive graphic skewness (Ski) of 0.02Φ (nearly symetrical). The sandstones for the Ajali Formation have an average Mz of 1.23Φ (medium grains), inclusive graphic standard deviation (δi) of 1.21Φ (poorly sorted), graphic kurtosis (Ka) of 1.46Φ (leptokurtic), and inclusive graphic skewness (Ski) of − 0.17Φ (nearly symetrical). Pebble morphometric analysis of the larger grains reveals that the mean values of elongation ratio (ER) = 0.69, coefficient of flatness (FI) = 54.90%, oblate–prolate index (OPI) = 3.34, the maximum projection sphericity index (MPSI) = 0.75, form = 0.67, and roundness (ρ) = 36.28% for the Lokoja Bassange Formation; ER = 0.76, FI = 37.07%, OPI = −3.20, the MPSI = 0.53, form = 0.38, and ρ = 52.93% for the Mamu Formation; and ER = 0.72, FI = 47.44%, OPI = 1.12, the MPSI = 0.67, form = 0.54 and ρ = 42.68% for the Ajali Formation. The integration of the various granulometric and pebble morphometric data, different bivariate and ternary plots indicate fluvial environment for the Lokoja Bassange Formation, dominantly shallow marine environment for the Mamu Formation and fluvial – shallow marine environment for the Ajali Formation. This study shows that the Benin Flank, western Anambra Basin has a depositional setting radiating between fluvial and shallow marine environments.

Keywords

Granulometric Pebble morphometric Bivariate Ternary plots Benin Flank 

References

  1. Agagu, O. K., Fayose, E. A., & Petters, S. W. (1985). Stratigraphy and sedimentations in the Senonian Anambra Basin of eastern Nigeria. Journal of Mining and Geology, 22(1& 2), 25–36.Google Scholar
  2. Amaral, E. J., & Pryor, W. A. (1977). Depositional environment of St. Peter sandstone deduce by textual analysis. Journal of Sedimentary Petrology, 40, 32–55.Google Scholar
  3. Anyanwu, N. P. C., & Arua, A. (1990). Ichnofossils from the Imo Formation and their paleoenvironmental significance. Journal of Mining and Geology, 26, 1–4.Google Scholar
  4. Arua, I. (1980). Paleocene macrofossils from the Imo Shale in Anambra state. Journal of Mining and Geology, 17, 81–84.Google Scholar
  5. Arua, I. (1986). Episodic sedimentation: An example from the Nkporo Shale (Campanian-Maastrichtian), Nigeria. Journal of Africa Earth Sciences, 7, 759–762.CrossRefGoogle Scholar
  6. Bain, A. O. N. (1924). The Nigerian coalified, section 1, Enugu Area. Bullutin, Geological Survey of Nigeria, 6, 17–23.Google Scholar
  7. Blatt, H. G., Berry, W. B. N., & Brande, S. (1991). Principles of stratigraphic analysis. Boston: Blackwell Scientific Publications 512p.Google Scholar
  8. Barrett, P.J. (1980). The shape of rock particles: a critical review of sedimentology. 27, 291–303.Google Scholar
  9. Dessauvagie, T. F. J., & Fayose, E. A. (1970). Excursion: cretaceous and tertiary rocks of Southern Nigeria. In T. F. J. Dessauvagie, & Whiteman, A. J. (Eds.), African Geology, (pp. 659–665).Google Scholar
  10. Dobkins, J. E., & Folk, R. L. (1970). Shape development in Tahiti Nui. Journal of Sedimentary Petrology, 40, 1167–1203.Google Scholar
  11. Els, B. G. (1988). Pebble moorphology of an ancient conglomerate: the Middelvlei gold placer, Witwatersrand, South Africa. Journal of Sedimentary Petrology, 58, 894–901.Google Scholar
  12. Folk, R. L. (1956). The role of texture and composition in sandstone classification. Journal of Sedimentary Petrology, 26, 166–171.Google Scholar
  13. Folk, R. L., & Ward, W. (1957). Brazos River bar: a study of significance of grain size pararmeters. Journal of Sedimentary Petrology, 27, 3–26.CrossRefGoogle Scholar
  14. Folk, R. L. (1974). Petrology of sedimentaryr. Austin: Hemphillis Publication Company 182p.Google Scholar
  15. Friedman, G. M. (1961). Distinction between dune, beach and river sands from their textural characteristics. Journal of Sedimentary Petrology, 31, 514–529.Google Scholar
  16. Friedman, G. M., & Sanders, J. E. (1978). Principles of sedimentology. New York: John Willey & Sons 792p.Google Scholar
  17. Hockey, R. D., Sacchi, R., de Graaf, W. P. F. H., & Muotoh, E. O. G. (1986). The geology of Lokoja-Auchi area. Geology Survey of Nigeria Bulletin, 39, 71.Google Scholar
  18. Illenberger, W. K., & Reddering, J. S. V. (1993). An evaluation of shape indices as palaeoenvironmental indicator using quartzite and metavolcanic clasts in Upper Creatceous to Palaeogene beach, river and submarine fan conglomerate—discussion. Sedimentology, 40(5), 1019–1020.CrossRefGoogle Scholar
  19. Jan Du Chene, R. E. (1978). Some new pollen species of the Upper Maastrichtian tar sand, Abeokuta Formation, Southern Nigeria. Research Micropaleontology, 9(2), 191–201.Google Scholar
  20. Kogbe, C. A. (1976). The continental intercalaire in northwestern Nigeria. Journal of Mining and Geology, 13, 45–50.Google Scholar
  21. Krumbein, W. C. (1942). Physical and chemical changes in sediments after deposition. Journal of Sedimentary Petrology, 12, 111–117.CrossRefGoogle Scholar
  22. Lancaster, N. (1981). Grain size characteristics of the Namib Desert linear dunes. Sedimentologic Bulletin, 28, 115–122.CrossRefGoogle Scholar
  23. Lancaster, N. (1986). Grain size characteristics of linear dunes in the southern Kalahari. Journal of Sedimentary Petrology, 56(3), 395–400.Google Scholar
  24. Lutig, G. (1962). The shape of pebbles in the continental, fluviatile and marine facies. International Association of Science Hydrology, 59, 253–258.Google Scholar
  25. Mbuk, I. N., Rao, V. R., & Kumarn, K. P. N. (1985). The Upper Cretaceous-Paleocene boundary in the Ohafia – Ozu Abam area, Imo State, Nigeria. Journal of Mining Geology, 22, 105–113.Google Scholar
  26. Miall, A. D. (1990). Principles of sedimentary basin analysis (2nd ed.). New York: Springer-Verlag 668p.CrossRefGoogle Scholar
  27. Miall, A. O. (1992). Alluvial deposits, In: Walker, R. G., and James, N. P., (eds), Facies models: Response to sea level changes (vol. 71, no. 4, pp. 119–142). Geological Association of Canada.Google Scholar
  28. Murat, R. C. (1972). Startigraphy and paleogeography of the Cretaceous and Lower Tertiary in southern Nigeria. In T. F. J. Dessauvagie & A. Whiteman (Eds.), African Geology (pp. 251–266). Ibadan: University of Ibadan.Google Scholar
  29. Nwajide, C. S. (2013). Geology of Nigeria sedimentary basins. Lagos: CSS Bookshops Limited 565p.Google Scholar
  30. Nwajide, C. S. (1979). A Lithostratigraphic analysis of the Nanka Sand, Southeastern Nigeria. Journal of Mining Geology, 16(2), 103–109.Google Scholar
  31. Nwajide, C. S., & Hoque, M. (1982). Pebble morphometry as an aid in environmental diagnosis: an example from the Middle Benue Trough. Journal of Minning and Geology, 19(1), 114–120.Google Scholar
  32. Obi, G. C. (1998). Upper Cretaceous Gongila Formation in the Hawal Basin, northeast Benue Trough: a storm and wind-dominated regressive shoreline complex. Journal of African Earth Sciences, 26(4), 619–632.CrossRefGoogle Scholar
  33. Obi, G. C., Okogbue, C. O., & Nwajide, C. S. (2001). Evolution of the Enugu Cuesta: a tectonically erosional process. Global Journal of Pure and Applied Sciences, 7, 321–330.CrossRefGoogle Scholar
  34. Ocheli, A., (2007). Sedimentology and depositional environmrmt of mid-Maastrchtian Ajali sandstone, Southern Nigeria. Unpublished M.Sc. Thesis, Awka: Nnamdi Azikiwe Universty, 126pp.Google Scholar
  35. Odumodu, C. F. R. (2013). Facies and granulometric analysis as proxies for the paleodepositional environment of the Imo Formation, southeastern Nigeria. Journal of Environment and Earth Science, 3(14), 55–70.Google Scholar
  36. Odumodu, C. F. R. (2014). Pebble form indices as signatures of the depositional environment of the Benin Formation along Atamiri River, Uli, southeastern Nigeria. International Journal of Scientific and Technology Research, 3(1), 23–32.Google Scholar
  37. Odumodu, C. F. R., & Ephraim, B. E. (2007a). Palaeoenvironmental analysis of the Nsukka Formation, using pebble morphology. Journal of Natural and Applied Sciences, 8(1), 73–84.Google Scholar
  38. Odumodu, C. F. R., & Ephraim, B. E. (2007b). Pebble as an indicator of the depositional environment of the Ajali sandstone. Journal of Natural and Applied Sciences, 8(2), 132–143.Google Scholar
  39. Okoro, A. U., Nwojije, C. N., Osegbo, F. N., & Ndubueze, V. O. (2012a). Palynological analysis of Late Cretaceous sediments of the Nkporo Formation in the Afikpo Sub-Basin, southeastern Nigeria. Asian Transactions on Science and Technology, 2(3), 35–46.Google Scholar
  40. Okoro, A. U., Okogbue, C. O., Nwajide, S. C., & Onuigbo, E. N. (2012b). Provenance and paleogeographiy of the Nkporo Formation (Late Campanian–Early Maastrichtian) in the Afikpo Sub-Basin, Southeastern Nigeria, Europe. Journal of Scientific Research, 88(3), 346–364.Google Scholar
  41. Okoro, A. U., Onuigbo, E. N., Akpononu, E. O., & Obiadi, I. I. (2012c). Lithifacies and pebble morphogenesis: keys to paleoenvironmental interpretation of the Nkporo Formation, Afikpo Sub-Basin, Nigeria. Journal of Environment and Earth Science, 2(6), 26–37.Google Scholar
  42. Okoro, A. U. (1995). Petrology and depositional history of the sandstone facies of the Nkporo Formation (Campano-Maastichtian) in Leru Area, Southeastern Nigeria. Journal of Mining and Geology, 31, 105–112.Google Scholar
  43. Onyeobi, T. U. S., Imeokparia, E. G., Ilegieuno, O. A., & Egbuniwe, I. G. (2013). Compositional geological and industrial characteristics of some clay bodies in Southern Nigeria. Journal of Geography and Geology, 5(2), 73–84.CrossRefGoogle Scholar
  44. Petters, S. W. (1996). Terminal Cretaceous regressions in Nigeria basins. Geologic de I’Afrique et de I’Atlantic Sud, Actes Colloqnes Angers, El’f Aquitaine. Memoir, 16, 166–173.Google Scholar
  45. Pettijohn, F. J. (1975). Sedimentary rock (3rd ed.). New York: Harper and Row 628p.Google Scholar
  46. Reijers, T. J. A. (1996). Selected chapters on geology. SPDC Publications, 197p.Google Scholar
  47. Reyment, R. A. (1965). Aspect of the geology of Nigeria. Ibadan: Ibadan University Press 145p.Google Scholar
  48. Reyment, R. A., & Morner, N. A. (1977). Cretaceous transgressions and regression exemplified by the South Atlantic Paleontology. Japan Special Paper, 21, 247–261.Google Scholar
  49. Sahu, K. B. (1964). Depositional mechanism for size analysis of clastic sediments. Journal of Sedimentary Petrology, 34, 73–83.Google Scholar
  50. Sames, C. W. (1966). Morphometric data of some recent pebble associations and their application to ancient deposits. Journal of Sedimentary Petrology, 36, 125–142.Google Scholar
  51. Shell-BP and Geologivcal Survey of Nigeria. (1957). 1:250,000 Geological map Series.Google Scholar
  52. Short, K. C., & Stauble, A. J. (1967). Outline of geology of Niger Delta. AAPG Bulletin, 51, 761–779.Google Scholar
  53. Simpson, A. (1954). Geology of the ecarpment, North of Enugu, Annual Report, Geological Survey of Nigeria, pp. 9–14.Google Scholar
  54. Sneed, E. D., & Folk, R. L. (1958). Pebbles in the lower Colorado River, Texas: a study in particles mophogenesis. Journal of Mining and Geology, 66, 114–150.CrossRefGoogle Scholar
  55. Stratten, T. (1974). Notes on the application of shape parameters to differentiate between beach ans river deposits in southern Africa. Transactions Geological Society of South Africa, 77, 59–64.Google Scholar
  56. Tattam, C. M. (1944). A review of Nigerian stratigraphy. Geology Survey of Nigeria, Special Report, 6, 27–46.Google Scholar
  57. Visher, G. S. (1969). Grain-size distributions and depositional processes. Journal Sedimentary Petrology, 39(3), 1074–1106.Google Scholar
  58. Waskom, J. D. (1958). Roundness as an indicator of environment along the coast of Panhandle Florida. Journal Sedimentary Petrology, 28, 351–360.Google Scholar
  59. Weimer, R. J. (1984). Relations of unconformities, tectonics, and sea-level changes, Cretaceous of Western Interior. In J. Schlee (Ed.), Inter regional unconformities and hydrocarbon accumulation (Vol. 36, pp. 7–35). Washington, D.C.: AAPG Memoir.Google Scholar
  60. Whiteman, A. (1982). Nigeria: Its Petroleum geology, resources, and potentials (Vol. 1 & 2). London: Graham and Trotman 394p.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Azuka Ocheli
    • 1
  • Anthony Uwaoma Okoro
    • 1
  • Ovie Benjamin Ogbe
    • 2
  • Godwin Okumagbe Aigbadon
    • 3
  1. 1.Department of Geological SciencesNnamdi Azikiwe UniversityAwkaNigeria
  2. 2.Department of Earth SciencesFederal University of Petroleum Resources EffurunEffurunNigeria
  3. 3.Department of Applied GeologyWesley University of Sciences and TechnologyOndoNigeria

Personalised recommendations