Skip to main content

Advertisement

Log in

Spatial factors of white-tailed deer herbivory assessment in the central Appalachian Mountains

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Because moderate to over-abundant white-tailed deer (Odocoileus virginianus) herbivory impacts biodiversity and can alter community function, ecological benchmarks of herbivory impact are needed to assess deer impacts. We evaluated spatial patterns of deer herbivory and their relation to herbivory assessment by evaluating woody vegetation along 20 transects at each of 30 sites spread across a wide range of deer herd densities and vegetative condition throughout the biodiverse Appalachian Mountains of Virginia, USA. Surprisingly, herbivory patterns and the availability of woody forage generally were unchanged among physiographic regions and land use diversity classes. However, some relationships between browsing pattern and vegetation varied with scale. The total quantity of vegetation browsed on a given site and at the transect scale were related positively to the availability of forage, as the proportion of stems browsed decreased as stem density increased. However, this was only true when all stems were considered equally. When stem densities by species were weighted for deer preference, the proportion of stems browsed had no relationship or increased with stem density. Compared to the value from all transects sampled, on average, the mean of ≥ 3 transects within a site was within 0.1 of the browsing ratio and stem densities were within 0.5 stems m−2. Our results suggest that one transect per square kilometer with a minimum of three transects may be sufficient for most browsing intensity survey requirements to assess herbivory impacts in the Appalachian region of Virginia. Still, inclusion of spatial factors to help partition variation of deer herbivory potentially may allow for improved precision and accuracy in the design of field herbivory impact assessment methods and improve their application across various landscape contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The use of any trade, product, or firm names does not imply endorsement by the US government.

References

  • Augustine, D. J., & Frelich, L. E. (1998). Effects of white-tailed deer on populations of an understory forb in fragmented deciduous forests. Conservation Biology, 12(5), 995–1004.

    Article  Google Scholar 

  • Augustine, D. J., & Jordan, P. A. (1998). Predictors of white-tailed deer grazing intensity in fragmented deciduous forests. Journal of Wildlife Management, 62(3), 1076–1085.

    Article  Google Scholar 

  • Augustine, D. J., Frelich, L. E., & Jordan, P. A. (1998). Evidence for two alternate stable states in an ungulate grazing system. Ecological Applications, 8(4), 1260–1269.

    Article  Google Scholar 

  • Baiser, B., Lockwood, J. L., La Puma, D., & Aronson, M. F. J. (2008). A perfect storm: two ecosystem engineers interact to degrade deciduous forests of New Jersey. Biological Invasions, 10(6), 785–795.

    Article  Google Scholar 

  • Belote, R. T., Jones, R. H., & Wieboldt, T. F. (2012). Compositional stability and diversity of vascular plant communities following logging disturbance in Appalachian forests. Ecological Applications, 22(2), 502–516.

    Article  Google Scholar 

  • Berteaux, D., Crete, M., Huot, J., Maltais, J., & Ouellet, J. P. (1998). Food choice by white-tailed deer in relation to protein and energy content of the diet: a field experiment. Oecologia, 115(1–2), 84–92.

    Article  Google Scholar 

  • Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., & White, J.-S. S. (2009). Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution, 24(3), 127–135.

    Article  Google Scholar 

  • Bressette, J. W., Beck, H., & Beauchamp, V. B. (2012). Beyond the browse line: complex cascade effects mediated by white-tailed deer. Oikos, 121(11), 1749–1760.

    Article  Google Scholar 

  • Campbell, T. A., Laseter, B. R., Ford, W. M., & Miller, K. V. (2004a). Movements of female white-tailed deer (Odocoileus virginianus) in relation to timber harvests in the central Appalachians. Forest Ecology and Management, 199(2), 371–378.

    Article  Google Scholar 

  • Campbell, T. A., Laseter, B. R., Ford, W. M., & Miller, K. V. (2004b). Feasibility of localized management to control white-tailed deer in forest regeneration areas. Wildlife Society Bulletin, 32(4), 1124–1131.

    Article  Google Scholar 

  • Campbell, T. A., Laseter, B. R., Ford, W. M., Odom, R. H., & Miller, K. V. (2006). Abiotic factors influencing deer browsing in West Virginia. Northern Journal of Applied Forestry, 23(1), 20–26.

    Google Scholar 

  • Castleberry, S. B., Ford, W. M., Miller, K. V., & Smith, W. P. (1999). White-tailed deer browse preferences in a southern bottomland hardwood forest. Southern Journal of Applied Forestry, 23(2), 78–82.

    Google Scholar 

  • Chollet, S., Baltzinger, C., Ostermann, L., Saint-Andre, F., & Martin, J. L. (2013). Importance for forest plant communities of refuges protecting from deer browsing. Forest Ecology and Management, 289(2013), 470–477.

    Article  Google Scholar 

  • Clinton, B. D. (2003). Light, temperature, and soil moisture responses to elevation, evergreen understory, and small canopy gaps in the southern Appalachians. Forest Ecology and Management, 186(1–3), 243–255.

    Article  Google Scholar 

  • Comisky, L., Royo, A. A., & Carson, W. P. (2005). Deer browsing creates rock refugia gardens on large boulders in the Allegheny National Forest, Pennsylvania. American Midland Naturalist, 154(1), 201–206.

    Article  Google Scholar 

  • Côté, S. D., Rooney, T. P., Tremblay, J.-P., Dussault, C., & Waller, D. M. (2004). Ecological impacts of deer overabundance. Annual Review of Ecology, Evolution, and Systematics, 35(2004), 113–147.

    Article  Google Scholar 

  • Crimmins, S. M., Edwards, J. W., Ford, W. M., Keyser, P. D., & Crum, J. M. (2010). Browsing patterns of white-tailed deer following increased timber harvest and a decline in population density. International Journal of Forestry Research, 20107, 1–7.

  • de Calesta, D. S., & Stout, S. L. (1997). Relative deer density and sustainability: a conceptual framework for integrating deer management with ecosystem management. Wildlife Society Bulletin, 25(2), 252–258.

    Google Scholar 

  • De Reu, J., Bourgeois, J., Bats, M., Zwertvaegher, A., Gelorini, V., De Smedt, P., Chu, W., Antrop, M., De Maeyer, P., Finke, P., Van Meirvenne, M., Verniers, J., & Crombé, P. (2013). Application of the topographic position index to heterogeneous landscapes. Geomorphology, 186(0), 39–49.

    Article  Google Scholar 

  • Didier, K. A., & Porter, W. F. (2003). Relating spatial patterns of sugar maple reproductive success and relative deer density in northern New York State. Forest Ecology and Management, 181(1–2), 253–266.

    Article  Google Scholar 

  • Dostaler, S., Ouellet, J. P., Therrien, J. F., & Côté, S. D. (2011). Are feeding preferences of white-tailed deer related to plant constituents? Journal of Wildlife Management, 75(4), 913–918.

    Article  Google Scholar 

  • Fenneman, N. M. (1938). Physiography of eastern United States. New York: McGraw-Hill.

    Google Scholar 

  • Ford, W. M., Johnson, A. S., Hale, P. E., & Wentworth, J. M. (1993). Availability and use of spring and summer woody browse by deer in clearcut and uncut forests of the southern Appalachians. Southern Journal of Applied Forestry, 17(3), 116–119.

    Google Scholar 

  • Ford, W. M., Odom, R. H., Hale, P. E., & Chapman, B. R. (2000). Stand-age, stand characteristics, and landform effects on understory herbaceous communities in southern Appalachian cove-hardwoods. Biological Conservation, 93(2), 237–246.

    Article  Google Scholar 

  • Fortin, M.-J., and M. R. T. Dale. (2009). Spatial autocorrelation. Pages 89–103 in A. S. Fotheringham, and P. A. Rogerson, Eds. Spatial Analysis. (pp. 89–103). London, England: SAGE Publications.

  • Frerker, K., Sonnier, G., & Waller, D. M. (2013). Browsing rates and ratios provide reliable indices of ungulate impacts on forest plant communities. Forest Ecology and Management, 291(0), 55–64.

    Article  Google Scholar 

  • Fry, J. A., G. Xian, S. Jin, J. A. Dewitz, C. G. Homer, L. Yang, C. A. Barnes, N. D. Herold, and J. D. Wickham. (2011). Completion of the 2006 national land cover database for the conterminous United States. Photogrammetric Engineering & Remote Sensing 77(9), 858–864.

  • Gawler, S. C. (2008). Northeastern terrestrial wildlife habitat classification. Report to the Virginia Department of Game and Inland Fisheries on behalf of the Northeast Association of Fish and Wildlife Agencies and the National Fish and Wildlife Foundation.

  • Goetsch, C., Wigg, J., Royo, A. A., Ristau, T., & Carson, W. P. (2011). Chronic over browsing and biodiversity collapse in a forest understory in Pennsylvania: results from a 60 year-old deer exclusion plot. Journal of the Torrey Botanical Society, 138(2), 220–224.

    Article  Google Scholar 

  • Halls, L. K. (1984). White-tailed deer: Ecology and management. Harrisburg, Pennsylvania: Stackpole Books.

    Google Scholar 

  • Hobbs, N. T. (1996). Modification of ecosystems by ungulates. Journal of Wildlife Management, 60(4), 695–713.

    Article  Google Scholar 

  • Horsley, S. B., Stout, S. L., & DeCalesta, D. S. (2003). White-tailed deer impact on the vegetation dynamics of a northern hardwood forest. Ecological Applications, 13(1), 98–118.

    Article  Google Scholar 

  • Isaaks, E. H., & Srivastava, R. M. (1989). An introduction to applied geostatistics. Oxford: Oxford University Press.

    Google Scholar 

  • Johnson, A. S., Hale, P. E., Ford, W. M., Wentworth, J. M., French, J. R., Anderson, O. F., & Pullen, G. B. (1995). White-tailed deer foraging in relation to successional stage, overstory type and management of southern Appalachian forests. American Midland Naturalist, 133(1), 18–35.

    Article  Google Scholar 

  • Kniowski, A. B., & Ford, W. M. (2017). Predicting intensity of white-tailed deer herbivory in the Central Appalachian Mountains. Journal of Forestry Research. https://doi.org/10.1007/s11676-017-0476-6.

  • Koda, R., & Fujita, N. (2011). Is deer herbivory directly proportional to deer population density? Comparison of deer feeding frequencies among six forests with different deer density. Forest Ecology and Management, 262(3), 432–439.

    Article  Google Scholar 

  • Koh, S., Bazely, D. R., Tanentzap, A. J., Voigt, D. R., & Da Silva, E. (2010). Trillium grandiflorum height is an indicator of white-tailed deer density at local and regional scales. Forest Ecology and Management, 259(8), 1472–1479.

    Article  Google Scholar 

  • Krueger, L. M., & Peterson, C. J. (2006). Effects of white-tailed deer on Tsuga canadensis regeneration: evidence of microsites as refugia from browsing. American Midland Naturalist, 156(2), 353–362.

    Article  Google Scholar 

  • McNab, W. H. (1993). A topographic index to quantify the effect of mesoscale landform on site productivity. Canadian Journal of Forest Research, 23(6), 1100–1107.

    Article  Google Scholar 

  • McShea, W. J. (2012). Ecology and management of white-tailed deer in a changing world. Annals of the New York Academy of Sciences, 1249(1), 45–56.

    Article  Google Scholar 

  • Meilleur, A., Bouchard, A., & Bergeron, Y. (1994). The relation between geomorphology and forest community types of the Haut-Saint-Laurent, Quebec. Vegetatio, 111(2), 173–192.

    Article  Google Scholar 

  • Miller, B. F., Campbell, T. A., Laseter, B. R., Ford, W. M., & Miller, K. V. (2009). White-tailed deer herbivory and timber harvesting rates: implications for regeneration success. Forest Ecology and Management, 258(7), 1067–1072.

    Article  Google Scholar 

  • Morellet, N., Champely, S., Gaillard, J.-M., Ballon, P., & Boscardin, Y. (2001). The browsing index: new tool uses browsing pressure to monitor deer populations. Wildlife Society Bulletin, 29(4), 1243–1252.

    Google Scholar 

  • Morellet, N., Gaillard, J.-M., Hewison, A. J. M., Ballon, P., Boscardin, Y., Duncan, P., Klein, F., & Maillard, D. (2007). Indicators of ecological change: new tools for managing populations of large herbivores. Journal of Applied Ecology, 44(3), 634–643.

    Article  Google Scholar 

  • Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4(2), 133–142.

    Article  Google Scholar 

  • Nixon, C. M., McClain, M. W., & Russell, K. R. (1970). Deer food habits and range characteristics in Ohio. Journal of Wildlife Management, 34(4), 870–886.

    Article  Google Scholar 

  • Oliphant, A. J., Wynne, R. H., Zipper, C. E., Ford, W. M., Donovan, P. F., Li, J. (2016). Autumn olive (Elaeagnus umbellata) presence and proliferation on former surface coal mines in Eastern USA. Biological Invasions, 19(1), 179–195.

    Article  Google Scholar 

  • Rearick, D., Kintz, L., Burke, K. L., & Ransom, T. S. (2011). Effects of white-tailed deer on the native earthworm, Eisenoides carolinensis, in the southern Appalachian Mountains, USA. Pedobiologia, 54, S173–S180.

    Article  Google Scholar 

  • Rooney, T. P. (1997). Escaping herbivory: refuge effects on the morphology and shoot demography of the clonal forest herb Maianthemum canadense. Journal of the Torrey Botanical Society, 124(4), 280–285.

    Article  Google Scholar 

  • Rooney, T. P. (2001). Deer impacts on forest ecosystems: a North American perspective. Forestry, 74(3), 201–208.

    Article  Google Scholar 

  • Rooney, T. P., & Waller, D. M. (2003). Direct and indirect effects of white-tailed deer in forest ecosystems. Forest Ecology and Management, 181(1–2), 165–176.

    Article  Google Scholar 

  • Royo, A. A., Collins, R., Adams, M. B., Kirschbaum, C., & Carson, W. P. (2010a). Pervasive interactions between ungulate browsers and disturbance regimes promote temperate forest herbaceous diversity. Ecology, 91(1), 93–105.

    Article  Google Scholar 

  • Royo, A. A., Stout, S. L., deCalesta, D. S., & Pierson, T. G. (2010b). Restoring forest herb communities through landscape-level deer herd reductions: is recovery limited by legacy effects? Biological Conservation, 143(11), 2425–2434.

    Article  Google Scholar 

  • Russell, F. L., Zippin, D. B., & Fowler, N. L. (2001). Effects of white-tailed deer (Odocoileus virginianus) on plants, plant populations and communities: a review. American Midland Naturalist, 146(1), 1–26.

    Article  Google Scholar 

  • Schmitz, O. J. (1991). Thermal constraints and optimization of winter feeding and habitat choice in white-tailed deer. Holarctic Ecology, 14(2), 104–111.

    Google Scholar 

  • Schoener, T. W. (1971). Theory of feeding strategies. Annual Review of Ecology and Systematics, 2, 2369–2404.

    Article  Google Scholar 

  • Senft, R. L., Coughenour, M. B., Bailey, D. W., Rittenhouse, L. R., Sala, O. E., & Swift, D. M. (1987). Large herbivore foraging and ecological hierarchies. Bioscience, 37(11), 789–799.

    Article  Google Scholar 

  • Stevens, D. L. J., & Olsen, A. R. (2004). Spatially balanced sampling of natural resources. Journal of the American Statistical Association, 99(465), 262–278.

    Article  Google Scholar 

  • Stromayer, K. A. K., & Warren, R. J. (1997). Are overabundant deer herds in the eastern United States creating alternate stable states in forest plant communities? Wildlife Society Bulletin, 25(2), 227–234.

    Google Scholar 

  • Swanson, F. J., Kratz, T. K., Caine, N., & Woodmansee, R. G. (1988). Landform effects on ecosystem patterns and processes. Bioscience, 38(2), 92–98.

    Article  Google Scholar 

  • Tierney, G. L., Faber-Langendoen, D., Mitchell, B. R., Shriver, W. G., & Gibbs, J. P. (2009). Monitoring and evaluating the ecological integrity of forest ecosystems. Frontiers in Ecology and the Environment, 7(6), 308–316.

    Article  Google Scholar 

  • Tierson, W. C., Mattfeld, G. F., Sage, R. W., & Behrend, D. F. (1985). Seasonal movements and home ranges of white-tailed deer in the Adirondacks. Journal of Wildlife Management, 49(3), 760–769.

    Article  Google Scholar 

  • Turner, M. G. (1989). Landscape ecology: the effect of pattern on process. Annual Review of Ecology and Systematics, 20, 20171–20197.

    Article  Google Scholar 

  • Urban, D. L., O'Neill, R. V., & Shugart, H. H. (1987). Landscape ecology. Bioscience, 37(2), 119–127.

    Article  Google Scholar 

  • Vangilder, L. D., Torgerson, O., & Porath, W. R. (1982). Factors influencing diet selection by white-tailed deer. Journal of Wildlife Management, 46(3), 711–718.

    Article  Google Scholar 

  • Virginia Department of Game and Inland Fisheries. (2015). Virginia deer management plan 2015-2024. Virginia: Richmond.

    Google Scholar 

  • Wiegmann, S. M., & Waller, D. M. (2006). Fifty years of change in northern upland forest understories: identity and traits of “winner” and “loser” plant species. Biological Conservation, 129(1), 109–123.

    Article  Google Scholar 

  • Wilson, J. P., & Gallant, J. C. (Eds.). (2000). Terrain analysis: principles and applications. New York: Wiley.

    Google Scholar 

  • Zar, J. H. (1984). Biostatistical analysis. Englewood Cliffs, New Jersey: Prentice-Hall, Inc..

    Google Scholar 

  • Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects models and extensions in ecology with R. New York: Springer.

    Book  Google Scholar 

Download references

Acknowledgments

We thank the Virginia Department of Game and Inland Fisheries for sponsoring this project using funds provided from the U.S. Fish and Wildlife Service through the Wildlife and Sport Fish Restoration Program, project WE99. Specifically we thank N. Lafon, M. Knox, J. Bowman, and D. Steffen for their comments and support. We also thank J. Parkhurst and M. Cherry for their comments on this manuscript and C. Parker for his help with field data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew B. Kniowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kniowski, A.B., Ford, W.M. Spatial factors of white-tailed deer herbivory assessment in the central Appalachian Mountains. Environ Monit Assess 190, 248 (2018). https://doi.org/10.1007/s10661-018-6627-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6627-1

Keywords

Navigation