Effects of hexavalent chromium on phytoplankton and bacterioplankton of the Río de la Plata estuary: an ex-situ assay

  • María Belén Sathicq
  • Nora Gómez


We examined the responses of the phytoplankton and the bacterioplankton of the freshwater zone of the Río de la Plata estuary when exposed to an addition of hexavalent chromium (Cr+6). The planktonic community from a coastal site was exposed to a chromium increase of 80 μg L−1 for 72 h in laboratory conditions. The results showed a decrease in the concentration of Cr+6 by 33% in the treatments, along with significant decreases in chlorophyll-a (63%), the chlorophyll-a:pheophytin-a ratio (33%), oxygen production (37%), and in the total density of the phytoplankton (15%). The relative abundance of chlorophytes and diatoms decreased, while the cyanobacteria thrived. Finally, the total bacterial density and the density of viable bacteria decreased. These results show that even small increments in Cr+6 can cause significant effects on the phytoplankton and bacterioplankton, which could potentially affect other trophic levels of the community, risking alterations of the entire ecosystem.


Chlorophyll-a Pheophytin Phytoplankton assemblage Oxygen production Bacterioplankton Toxicology 


  1. AGOSBA-OSN-SHN (Administr. Gen. Obras Sanit. Prov. BuenosAires – Obras Sanit Nación – Serv. Hidrogr. Naval) (1994). Río de la Plata. Calidad de las aguas de la Franja Costera Sur (SanIsidro-Magdalena). Buenos Aires, 168 pp.Google Scholar
  2. Aiyar, J., Berkovits, H. J., Floyd, R. A., & Wetterhahn, K. E. (1991). Reaction of chromium (VI) with glutathione or with hydrogen peroxide: identification of reactive intermediates and their role in chromium (VI)-induced DNA damage. Environmental Health Perspectives, 92, 53–62.CrossRefGoogle Scholar
  3. Ajmal, M., Nomani, A. A., & Ahmad, A. (1984). Acute toxicity of chrome electroplating wastes to microorganisms: adsorption of chromate and chromium (VI) on a mixture of clay and sand. Water, Air, and Soil Pollution, 23(2), 119–127.CrossRefGoogle Scholar
  4. Ali, N. A., Dewez, D., Didur, O., & Popovic, R. (2006). Inhibition of photosystem II photochemistry by Cr is caused by the alteration of both D1 protein and oxygen evolving complex. Photosynthesis Research, 89(2), 81–87.CrossRefGoogle Scholar
  5. Bagchi, D., Stohs, S. J., Downs, B. W., Bagchi, M., & Preuss, H. G. (2002). Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology, 180(1), 5–22.CrossRefGoogle Scholar
  6. Bharagava, R. N., & Mishra, S. (2018). Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicology and Environmental Safety, 147, 102–109.CrossRefGoogle Scholar
  7. Boulos, L., Prevost, M., Barbeau, B., Coallier, J., & Desjardins, R. (1999). LIVE/DEAD® BacLight™: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. Journal of Microbiological Methods, 37(1), 77–86.CrossRefGoogle Scholar
  8. Bridgewater, L. C., Manning, F. C., Woo, E. S., & Patierno, S. R. (1994). DNA polymerase arrest by adducted trivalent chromium. Molecular Carcinogenesis, 9(3), 122–133.CrossRefGoogle Scholar
  9. Cairns Jr., J. (1983). Are single species toxicity tests alone adequate for estimating environmental hazard? Hydrobiologia, 100(1), 47–57.CrossRefGoogle Scholar
  10. Cervantes, C., & Campos-García, J. (2007). Reduction and efflux of chromate by bacteria. In Molecular microbiology of heavy metals (pp. 407–419). Berlin: Springer.CrossRefGoogle Scholar
  11. Cervantes, C., Campos-García, J., Devars, S., Gutiérrez-Corona, F., Loza-Tavera, H., Torres-Guzmán, J. C., & Moreno-Sánchez, R. (2001). Interactions of chromium with microorganisms and plants. FEMS Microbiology Reviews, 25(3), 335–347.CrossRefGoogle Scholar
  12. Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18(1), 117–143.CrossRefGoogle Scholar
  13. Clarke, K. R., & Gorley, R. N. (2001). PRIMER v5: user manual/tutorial. Albany: Primer-E Limited.Google Scholar
  14. Clesceri, L. S., Greenberg, A. E., & Eaton, A. D. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington D.C. USA: APHA American Public Health Association.Google Scholar
  15. Cohen, J. (1988). The effect size index: d. Statistical power analysis for the behavioral. Sciences, 2, 284–288.Google Scholar
  16. Corradi, M. G., Gorbi, G., & Bassi, M. (1995). Hexavalent chromium induces gametogenesis in the freshwater alga Scenedesmus acutus. Ecotoxicology and Environmental Safety, 30(2), 106–110.CrossRefGoogle Scholar
  17. Crossey, M. J., & La Point, T. W. (1988). A comparison of periphyton community structural and functional responses to heavy metals. Hydrobiologia, 162(2), 109–121.CrossRefGoogle Scholar
  18. De Rore, H., Top, E., Houwen, F., Mergeay, M., & Verstraete, W. (1994). Evolution of heavy metal resistant transconjugants in a soil environment with a concomitant selective pressure. FEMS Microbiology Ecology, 14(3), 263–273.CrossRefGoogle Scholar
  19. Filip, D. S., Peters, V. T., Adams, E. D., & Middlebrooks, J. (1979). Residual heavy metal removal by an algae-intermittent sand filtration system. Water Research, 13(3), 305–313.CrossRefGoogle Scholar
  20. FREPLATA (2005). Análisis Diagnóstico Transfronterizo del Río de la Plata y su Frente Marítimo. Protección Ambiental del Río de la Plata y su Frente Marítimo: Prevención y Control de la Contaminación y Restauración de Hábitats. Documento Técnico. Proyecto PNUD/GEF RLA/99/G31. Montevideo, Uruguay.Google Scholar
  21. Frey, B. E., Riedel, G. F., Bass, A. E., & Small, L. F. (1983). Sensitivity of estuarine phytoplankton to hexavalent chromium. Estuarine, Coastal and Shelf Science, 17(2), 181–187.CrossRefGoogle Scholar
  22. Gómez, N., Licursi, M., Bauer, D. E., Ambrosio, E. S., & Rodrigues Capítulo, A. (2012). Assessment of biotic integrity of the coastal freshwater tidal zone of a temperate estuary of South America through multiple indicators. Estuar Coasts, 35, 1328–1339.CrossRefGoogle Scholar
  23. Guasch, H., & Serra, A. (2009). Uso de ríos artificiales en ecología fluvial. In: Conceptos y técnicas en ecología fluvial. Fundación BBVA. 387–396 p.Google Scholar
  24. INA. (2011). Modelación hidro-sedimentológica del Río de la Plata. In Dinámica de sedimentos bajo condiciones hidrometeorológicas normales, Informe INA-LHA 07-296-11. Argentina: Proyecto Freplata-FFEM.Google Scholar
  25. INDEC (2010). Publicación del Censo Nacional de Población, Hogares y Viviendas. Censo del Bicentenario. Resultados definitivos. Serie B N° 2. Argentina.
  26. Kadiiska, M. B., Xiang, Q. H., & Mason, R. P. (1994). In vivo free radical generation by chromium (VI): an electron spin resonance spin-trapping investigation. Chemical Research in Toxicology, 7(6), 800–805.CrossRefGoogle Scholar
  27. Katz, S. A., & Salem, H. (1993). The toxicology of chromium with respect to its chemical speciation: a review. Journal of Applied Toxicology, 13(3), 217–224.CrossRefGoogle Scholar
  28. Kawanishi, S., Inoue, S., & Sano, S. (1986). Mechanism of DNA cleavage induced by sodium chromate (VI) in the presence of hydrogen peroxide. Journal of Biological Chemistry, 261(13), 5952–5958.Google Scholar
  29. Knöpp, H. (1968). Stoffwechseldynamische Untersuchungsverfahren für die biologische Wasseranalyse. Internationale Revue der Gesamten Hydrobiologie, 53(3), 409–441.CrossRefGoogle Scholar
  30. Kusk, K. O., & Nyholm, N. (1992). Toxic effects of chlorinated organic compounds and potassium dichromate on growth rate and photosynthesis of marine phytoplankton. Chemosphere, 25(6), 875–886.CrossRefGoogle Scholar
  31. Licursi, M., & Gómez, N. (2013). Short-term toxicity of hexavalent-chromium to epipsammic diatoms of a microtidal estuary (Río de la Plata): responses from the individual cell to the community structure. Aquatic Toxicology, 134, 82–91.CrossRefGoogle Scholar
  32. Loez, C. R., Topalián, M. L., & Salibián, A. (1995). Effects of zinc on the structure and growth dynamics of a natural freshwater phytoplankton assemblage reared in the laboratory. Environmental Pollution, 88(3), 275–281.CrossRefGoogle Scholar
  33. López, L. J., & Nagy, G. J. (1999). Hydrography and sediment transport characteristics of the Río de la Plata: a review. In G. M. E. Perillo, M. C. Piccolo, & M. Pino-Quimira (Eds.), Estuaries of South America: their geomorphology and dynamics (pp. 133–159). Berlin: Springer-Verlag.Google Scholar
  34. Lorenzen, C. J. (1967). Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnology and Oceanography, 12(2), 343–346.CrossRefGoogle Scholar
  35. Luli, G. W., Talnagi, J. W., Strohl, W. R., & Pfister, R. M. (1983). Hexavalent chromium-resistant bacteria isolated from river sediments. Applied and Environmental Microbiology, 46(4), 846–854.Google Scholar
  36. Lund, J. W. G., Kipling, C., & Le Cren, E. D. (1958). The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia, 11, 143–170.CrossRefGoogle Scholar
  37. Margalef, R. (1983). Limnología (No. 504.45 MAR). Barcelona: Omega.Google Scholar
  38. Mishra, S., & Bharagava, R. N. (2016). Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. Journal of Environmental Science and Health, Part C, 34(1), 1–32.CrossRefGoogle Scholar
  39. Patrick, R. (1978). Effects of trace metals in the aquatic ecosystem: the diatom community, base of the aquatic food chain, undergoes significant changes in the presence of trace metals and other alterations in water chemistry. American Scientist, 66(2), 185–191.Google Scholar
  40. Petria, V. (1978). Effect of chromium salts from water sediments on physiological processes in the alga Chlorella vulgaris. Revue Roumaine Seriya Biologicheskikh Vegetativa, 23, 55–57.Google Scholar
  41. Plaper, A., Jenko-Brinovec, Š., Premzl, A., Kos, J., & Raspor, P. (2002). Genotoxicity of trivalent chromium in bacterial cells. Possible effects on DNA topology. Chemical Research in Toxicology, 15(7), 943–949.CrossRefGoogle Scholar
  42. Ramírez-Díaz, M. I., Díaz-Pérez, C., Vargas, E., Riveros-Rosas, H., Campos-García, J., & Cervantes, C. (2008). Mechanisms of bacterial resistance to chromium compounds. Biometals, 21(3), 321–332.CrossRefGoogle Scholar
  43. Rocchetta, I., & Küpper, H. (2009). Chromium-and copper-induced inhibition of photosynthesis in Euglena gracilis analysed on the single-cell level by fluorescence kinetic microscopy. New Phytologist, 182(2), 405–420.CrossRefGoogle Scholar
  44. Rocchetta, I., Ruiz, L. B., Magaz, G., & Conforti, V. T. D. (2003). Effects of hexavalent chromium in two strains of Euglena gracilis. Bulletin of Environmental Contamination and Toxicology, 70(5), 1045–1051.CrossRefGoogle Scholar
  45. Rodríguez, M. C., Barsanti, L., Passarelli, V., Evangelista, V., Conforti, V., & Gualtieri, P. (2007). Effects of chromium on photosynthetic and photoreceptive apparatus of the alga Chlamydomonas reinhardtii. Environmental Research, 105(2), 234–239.CrossRefGoogle Scholar
  46. Romaní, A. M., & Sabater, S. (2001). Structure and activity of rock and sand biofilms in a Mediterranean stream. Ecology, 82(11), 3232–3245.CrossRefGoogle Scholar
  47. Schroll, H. (1978). Determination of the absorption of Cr+6 and Cr+3 in an algal culture of Chlorella pyrenoidosa using 51 Cr. Bulletin of Environmental Contamination and Toxicology, 20(1), 721–724.CrossRefGoogle Scholar
  48. Sudhakar, G., Jyothi, B., & Venkateswarlu, V. (1991). Metal pollution and its impact on algae in flowing waters in India. Archives of Environmental Contamination and Toxicology, 21(4), 556–566.CrossRefGoogle Scholar
  49. Summers, A. O., & Jacoby, G. A. (1978). Plasmid-determined resistance to boron and chromium compounds in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 13(4), 637–640.CrossRefGoogle Scholar
  50. U. S. Environmental Protection Agency (US EPA) (1989). Selenastrum capricornutum growth test. In: Short term methods for estimating the chronic toxicity of effluents and receiving water to freshwater organisms. EPA/600/489/014. Environmental Monitoring and Support Laboratory Office of Research and Development, Cincinnati.Google Scholar
  51. Utermöhl, H. (1958). Zurvervollkommnung der quantitativen phytoplankton methodik.Google Scholar
  52. Wang, W. X., & Dei, R. C. (2001). Effects of major nutrient additions on metal uptake in phytoplankton. Environmental Pollution, 111(2), 233–240.CrossRefGoogle Scholar
  53. Whitton, B. A. (1984). Algae as monitors of heavy metals in freshwaters. Algae as ecological indicators (pp. 257–280). New York: Academic Press.Google Scholar
  54. Wong, P. K., & Chang, L. (1991). Effects of copper, chromium and nickel on growth, photosynthesis and chlorophyll a synthesis of Chlorella pyrenoidosa 251. Environmental Pollution, 72(2), 127–139.CrossRefGoogle Scholar
  55. Wong, P. T., & Trevors, J. T. (1988). Chromium toxicity to algae and bacteria. Chromium in the Natural and Human Environments, 305–315.Google Scholar
  56. Zibilske, L. M., & Wagner, G. H. (1982). Bacterial growth and fungal genera distribution in soil amended with sewage sludge containing cadmium, chromium, and copper. Soil Science, 134(6), 364–370.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Limnología “Dr. Raúl A. Ringuelet”, Facultad de Ciencias Naturales y MuseoUniversidad Nacional de La PlataBuenos AiresArgentina
  2. 2.CONICET—Consejo Nacional de Investigaciones Científicas y TecnológicasSanta FeArgentina

Personalised recommendations