Skip to main content

Advertisement

Log in

Effects of indole-3-butytric acid on lead and zinc accumulations in Pseudostellaria maximowicziana

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Plant hormones can improve the phytoremediation capabilities of heavy metal hyperaccumulator plants. In this study, different doses of indole-3-butytric acid (IBA) were sprayed on the leaves of the lead (Pb) and zinc (Zn) accumulator plant Pseudostellaria maximowicziana, which was planted in Pb–Zn contaminated soil, and the effects of IBA on Pb and Zn accumulation levels in P. maximowicziana were studied. Spraying 25- and 50-mg/L IBA doses increased the stem, leaf and shoot biomasses of P. maximowicziana compared with the control, while 75- and 100-mg/L IBA doses decreased them. The 50-mg/L IBA dose increased the P. maximowicziana contents of chlorophyll a, total chlorophyll and carotenoid of compared with the control, and other doses had no significant effects or decreased these values. Spraying IBA reduced the superoxide dismutase activity of P. maximowicziana compared with the control, but improved the peroxidase and catalase activities. The 50-, 75-, and 100-mg/L IBA doses increased the Pb and Zn contents in P. maximowicziana compared with the control and also increased the amounts of Pb and Zn extracted by P. maximowicziana. Thus, 50 mg/L of IBA could promote the growth and the Pb and Zn phytoremediation capabilities of P. maximowicziana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adie, B., Perez-Perez, J., Perez-Perez, M., Godoy, M., Sanchez-Serrano, J. E., & Solano, R. (2007). ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell, 19(5), 1665–1681.

    Article  CAS  Google Scholar 

  • Bari, R., & Jones, J. D. (2009). Role of plant hormones in plant defence responses. Plant Molecular Biology, 69(4), 473–488.

    Article  CAS  Google Scholar 

  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276–287.

    Article  CAS  Google Scholar 

  • Cassina, L., Tassi, E., Morelli, E., Giorgetti, L., Remorini, D., Chaney, R. L., & Barbafieri, M. (2011). Exogenous cytokinin treatments of a Ni hyper-accumulator, Alyssum murale, grown in a serpentine soil: Implications for phytoextraction. International Journal of Phytoremediation, 13, 90–101.

    Article  Google Scholar 

  • Cassina, L., Tassi, E., Pedron, F., Petruzzelli, G., Ambrosini, P., & Barbafieri, M. (2012). Using a plant hormone and a thioligand to improve phytoremediation of Hg-contaminated soil from a petrochemical plant. Journal of Hazardous Materials, 231-232, 36–42.

    Article  CAS  Google Scholar 

  • Choudhury, S., & Panda, S. K. (2004). Role of salicylic acid in regulating cadmium induced oxidative stress in Oryza sativa L. roots. Bulgarian Journal of Plant Physiology, 30, 95–110.

    CAS  Google Scholar 

  • Hao, Z. B., Cang, J., & Xu, Z. (2004). Plant physiology experiment. Harbin: Harbin Institute of Technology Press (in Chinese).

    Google Scholar 

  • Hui, J. C., Jiang, X. J., Yang, Y. X., Wu, J., Zhu, X. M., & Lin, L. J. (2009). Screening of lead-zinc enrichment-plants from Hanyuan lead-zinc mine areas in Sichuan Province. Research of Soil and Water Conservation, 24, 233–236 (in Chinese).

    Google Scholar 

  • Husen, A., & Pal, M. (2007). Metabolic changes during adventitious root primordium development in Tectona grandis Linn. F (teak) cuttings as affected by age of donor plants and auxin (IBA and NAA) treatment. New Forests, 33(3), 309–323.

    Article  Google Scholar 

  • Jemâa, E., Saïda, A., & Sadok, B. (2011). Impact of indole-3-butyric acid and indole-3-acetic acid on the lateral roots growth of Arabidopsis under salt stress conditions. Australian Journal of Agricultural Engineering, 2(1), 18–24.

    Google Scholar 

  • Li, J. T., Zhang, Y. H., Guo, X. S., Wang, C., Li, K., & Hu, Z. H. (2014). Effect of IBA on growth of Achyranthus bidentata and the accumulation of major medicinal components. Northern Horticulture, 37, 153–155 (in Chinese).

    Google Scholar 

  • Li, M., & Zhang, G. (1999). Effects of paclobutrazol on the morphology, structure, and chlorophyll content of regenerated plantlets of maize. Israel Journal of Plant Sciences, 47(2), 85–88.

    Article  CAS  Google Scholar 

  • Ma, Y. M. (2014). Effects of different concentrations of IBA on the growth of Quercus mongolica seedlings. The Journal of Hebei Forestry Science and Technology, 41, 23–24 (in Chinese).

    Google Scholar 

  • Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence—A practical guide. Journal of Experimental Botany, 51, 659–668.

    Article  CAS  Google Scholar 

  • Mohtadi, A., & Ghaderian, S. M. (2012). Evaluation of auxin (IAA) and kinetin effects on lead uptake and accumulation in Matthiola flavida Bioss. Journal of Cell & Tissue, 3, 161–169.

    Google Scholar 

  • Ort, D. R., Zhu, X. G., & Melis, A. (2011). Optimizing antenna size to maximize photosynthetic efficiency. Plant Physiology, 155, 79–85.

    Article  CAS  Google Scholar 

  • Piotrowska-Niczyporuk, A., Bajguz, A., Zambrzycka, E., & Godlewska-Żyłkiewicz, B. (2012). Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiology and Biochemistry, 52(1), 52–56.

    Article  CAS  Google Scholar 

  • Schützendübel, A., & Polle, A. (2002). Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany, 53, 1351–1365.

    Google Scholar 

  • Tassi, E., Pouget, J., Petruzzelli, G., & Barbafieri, M. (2008). The effects of exogenous plant growth regulators in the phytoextraction of heavy metals. Chemosphere, 71(1), 66–73.

    Article  CAS  Google Scholar 

  • Thévenod, F., & Lee, W. K. (2013). Cadmium and cellular signaling cascades: Interactions between cell death and survival pathways. Archives of Toxicology, 87, 1743–1786.

    Article  Google Scholar 

  • Ushimaru, T., Kanematsu, S., Shibasaka, M., & Tsuji, H. (1999). Effect of hypoxia on the antioxidative enzymes in aerobically grown rice (Oryza sativa) seedlings. Physiologia Plantarum, 107(2), 181–187.

    Article  CAS  Google Scholar 

  • Wang, D. N., & Xue, J. H. (2012). Effects of IBA on uptake of Cd2+ in the contaminated soil by Liquidambar formosana Hance seedlings. Journal of Nanjing Forestry University (Natural Science Edition), 36, 121–124 (in Chinese).

    Google Scholar 

  • Wang, J., Lin, L., Luo, L., Liao, M., Lv, X., & Wang, Z. (2016a). The effects of abscisic acid (ABA) addition on cadmium accumulation of two ecotypes of Solanum photeinocarpum. Environmental Monitoring and Assessment, 188(3), 1–8.

    Google Scholar 

  • Wang, Y. P., Zhang, S. Q., Liu, X. J., Lin, J., Qi, Y., & Chen, M. (2016b). Effects of exogenous Ca2+ and IBA on seedlings growth of energy plant hybrid Pennisetum under NaCl stress. Acta Ecologica Sinica, 36, 369–376.

    CAS  Google Scholar 

  • Ye, L. C., Zhang, Q. S., Jiang, X. J., Zhu, X. M., Lin, L. J., & Shao, J. R. (2010). Characteristics of accumulating lead and zinc by diggings plant Pseudostellaria maximowicziana. China Environmental Science, 30(2), 239–245.

    CAS  Google Scholar 

  • Yuan, L., & Xu, D. (2002). Stimulatory effect of exogenous GA3 on photosynthesis and the level of endogenous GA1+3 in soybean leaf. Acta Photophysiologica Sinica, 28(4), 317–320.

    CAS  Google Scholar 

  • Zengin, F. K. (2006). The effects of Co2+ and Zn2+ on the contents of protein, abscisic acid, proline and chlorophyll in bean (Phaseolus vulgaris cv. Strike) seedlings. Journal of Environmental Biology, 27, 441–448.

    CAS  Google Scholar 

  • Zhang, W. L., Huo, Q. Z., Zhu, C. H., & Yang, Y. H. (2010a). Technical measures of improving the survival rate of fruit trees in sandy and semi-arid areas. Northern Fruits, 32, 51–52 (in Chinese).

    Google Scholar 

  • Zhang, X. F., Xia, H. P., Li, Z. A., Zhuang, P., & Gao, B. (2011). Identification of a new potential Cd-hyperaccumulator Solanum photeinocarpum by soil seed bank-metal concentration gradient method. Journal of Hazardous Materials, 189, 414–419.

    Article  CAS  Google Scholar 

  • Zhang, X., Xia, H., Li, Z., Zhuang, P., & Gao, B. (2010b). Potential of four forage grasses in remediation of cd and Zn contaminated soils. Bioresource Technology, 101(6), 2063–2066.

    Article  CAS  Google Scholar 

  • Zhao, L., Pan, Y. Z., Zhu, Q., Yue, J., & Mi, S. H. (2012). Effects of 6-BA, GA3 and IBA on photosynthetic pigment content and related enzyme activities of Lilium case blanca. Acta Prataculturae Sinica, 21, 248–256.

    Google Scholar 

Download references

Acknowledgements

We thank Lesley Benyon, PhD, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijin Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ran, Z., Chen, C., Chen, F. et al. Effects of indole-3-butytric acid on lead and zinc accumulations in Pseudostellaria maximowicziana. Environ Monit Assess 190, 212 (2018). https://doi.org/10.1007/s10661-018-6607-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6607-5

Keywords

Navigation