Advertisement

Rat-bites of an epidemic proportion in Peshawar vale; a GIS based approach in risk assessment

  • Syeda Hira Fatima
  • Farrah Zaidi
  • Muhammad Adnan
  • Asad Ali
  • Qaiser Jamal
  • Muhammad Khisroon
Article
  • 134 Downloads

Abstract

Contemporary studies demonstrate that rodent bites do not occur frequently. However, a huge number of cases were reported from Peshawar vale, Pakistan during 2016. Two species, the local black rat Rattus rattus (Linnaeus, 1758) and the invasive brown rat Rattus norvegicus (Berkenhout, 1769) might be the suspected cause. Several studies indicated the invasion of brown rats into Pakistan presumably via port city of Karachi. In this study, we modeled geospatial distribution of rodent bites for risk assessment in the region. Bite cases reported to tertiary care lady reading hospital were monitored from January 1 to August 31, 2016. Among 1747 cases, statistically informative data (n = 1295) was used for analyses. MaxEnt algorithm was employed for geospatial modeling, taking into account various environmental variables (temperature, precipitation, humidity, and elevation) and anthropogenic factors (human population density, distance from roads, distance from water channels, and land use/land cover). MaxEnt results revealed that urban slums (84.5%) are at highest risk followed by croplands (10.9%) and shrublands (2.7%). Anthropogenic factors affecting incidence of rodent bites included host density (contribution: 34.7), distance from water channels (3.2), land use/land cover (2.8), and distance from roads (2). Most of the cases occurred within a radius of 0.3 km from roads and 5 km from water channels. Rodent bite incidence is currently at its peak in Peshawar vale. Factors significantly affecting rodents’ bite activity and their distribution and dispersal include urbanization, distance from roads, and water channels. Further studies are needed to determine the impact of invasion by brown rat on bite incidence.

Keywords

Rattus norvegicus MaxEnt Pakistan Rat bites 

Notes

Acknowledgments

We are thankful to two BS students of Zoology Department University of Peshawar, Miss Seemab and Miss Sumaira, for data collection from Lady Reading Hospital of Peshawar. We are also thankful to Mr. Shahryar, photographer APP, for providing photographs of Peshawar City after a rainstorm.

Author contributions

SHF formulated methodology, carried out data analysis using GIS tools, and prepared the manuscript. FZ designed the study and prepared the manuscript. MA contributed in data acquisition. AA extended helped during the geospatial analysis. QJ collected and identified rat specimens. MK worked out the final draft of the manuscript.

Compliance with ethical standards

Conflict of interests

The authors declare that there is no conflict of interests.

Availability of data and materials

Our data is available on Mendeley Data online repository.

References

  1. Abrahamian, F. M., & Goldstein, E. J. (2011). Microbiology of animal bite wound infections. Clinical Microbiology Reviews, 24(2), 231–246.CrossRefGoogle Scholar
  2. Ahmad, E., Hussain, I., & Brooks, J. E. (1995). Losses of stored foods due to rats at grain markets in Pakistan. International biodeterioration & biodegradation, 36(1-2), 125–133.Google Scholar
  3. Alam, S., Fatima, A., & Butt, M. S. (2007). Sustainable development in Pakistan in the context of energy consumption demand and environmental degradation. Journal of Asian Economics, 18(5), 825–837.CrossRefGoogle Scholar
  4. Aplin, K. P., Suzuki, H., Chinen, A. A., Chesser, R. T., Ten Have, J., Donnellan, S. C., et al. (2011). Multiple geographic origins of commensalism and complex dispersal history of black rats. PLoS One, 6(11), e26357.CrossRefGoogle Scholar
  5. Baker, R. H. A., Sansford, C. E., Jarvis, C. H., Cannon, R. J. C., MacLeod, A., & Walters, K. F. A. (2000). The role of climatic mapping in predicting the potential geographical distribution of non-indigenous pests under current and future climates. Agriculture, Ecosystems & Environment, 82(1), 57–71.CrossRefGoogle Scholar
  6. Banks, P. B., & Smith, H. M. (2015). The ecological impacts of commensal species: black rats, Rattus rattus, at the urban–bushland interface. Wildlife Research, 42(2), 86–97.CrossRefGoogle Scholar
  7. Bordes, F., Caron, A., Blasdell, K., Garine-Wichatitsky, M., & Morand, S. (2017). Forecasting potential emergence of zoonotic diseases in South-East Asia: network analysis identifies key rodent hosts. Journal of Applied Ecology, 54(3), 691–700.CrossRefGoogle Scholar
  8. Bregman, B., & Slavinski, S. (2012). Using emergency department data to conduct dog and animal bite surveillance in New York City, 2003–2006. Public Health Reports, 127(2), 195–201.CrossRefGoogle Scholar
  9. Buckle, A. (2013). Anticoagulant resistance in the United Kingdom and a new guideline for the management of resistant infestations of Norway rats (Rattus norvegicus Berk). Pest Management Science, 69(3), 334–341.CrossRefGoogle Scholar
  10. Burke, V. D., & Johnson, K. A. (1975). U.S. Patent No. 3,906,656. Washington, DC: U.S. Patent and Trademark Office.Google Scholar
  11. Capizzi, D., Bertolino, S., & Mortelliti, A. (2014). Rating the rat: global patterns and research priorities in impacts and management of rodent pests. Mammal Review, 44(2), 148–162.CrossRefGoogle Scholar
  12. Carnahan, D., Gove, W., & Galle, O. R. (1974). Urbanization, population density, and overcrowding: trends in the quality of life in urban America. Social Forces, 53(1), 62–72.CrossRefGoogle Scholar
  13. Chaisiri, K., Siribat, P., Ribas, A., & Morand, S. (2015). Potentially zoonotic helminthiases of murid rodents from the Indo-Chinese peninsula: impact of habitat and the risk of human infection. Vector-Borne and Zoonotic Diseases, 15(1), 73–85.CrossRefGoogle Scholar
  14. Chambers, L., Singleton, G., & Wensveen, V. M. (1996). Spatial heterogeneity in wild populations of house mice on the Darling Downs, Southeastern Queensland. Wildlife Research, 23, 23–38.CrossRefGoogle Scholar
  15. Chhabra, S., Chhabra, N., & Gaba, S. (2015). Maxillofacial injuries due to animal bites. Journal of Maxillofacial and Oral Surgery, 14(2), 142–153.CrossRefGoogle Scholar
  16. Childs, J. E., McLafferty, S. L., Sadek, R., Miller, G. L., Khan, A. S., DuPree, E. R., & Glass, G. E. (1998). Epidemz rats (Rattus norvegicus and Rattus rattus). Urban Ecosystems, 17(1), 149–162.Google Scholar
  17. Colvin, B. A., & Jackson, W. B. (1999). Urban rodent control programs for the 21st century.Google Scholar
  18. Costa, F., Ribeiro, G. S., Felzemburgh, R. D., Santos, N., Reis, R. B., Santos, A. C., & Reis, M. G. (2014). Influence of household rat infestation on Leptospira transmission in the urban slum environment. PLoS neglected tropical diseases, 8(12), e3338.Google Scholar
  19. Craig, T. (2016, April 5). As giant rats menace Pakistan, conspiracy theories swirl. The Washington Post.Google Scholar
  20. Dendle, C., & Looke, D. (2008). Animal bites: an update for management with a focus on infections. Emergency Medicine Australasia, 20(6), 458–467.CrossRefGoogle Scholar
  21. Dickman, C. R., & Doncaster, C. P. (1987). The ecology of small mammals in urban habitats. I. Populations in a patchy environment. The Journal of Animal Ecology, 56, 629–640.CrossRefGoogle Scholar
  22. Feng, A. Y., & Himsworth, C. G. (2014). The secret life of the city rat: a review of the ecology of urban Norway and black rats (Rattus norvegicus and Rattus rattus). Urban Ecosystems, 17(1), 149–162.CrossRefGoogle Scholar
  23. Fourcade, Y., Engler, J. O., Rödder, D., & Secondi, J. (2014). Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS One, 9(5), e97122.CrossRefGoogle Scholar
  24. Gaughan, A. E., Stevens, F. R., Linard, C., Jia, P., & Tatem, A. J. (2013). High resolution population distribution maps for Southeast Asia in 2010 and 2015. PLoS One, 8(2), e55882.CrossRefGoogle Scholar
  25. Ghalib, S. A., Jabbar, A. B. D. U. L., Khan, A. R., & Zehra, A. (2007). Current status of the mammals of Balochistan. Pakistan Journal of Zoology, 39(2), 117.Google Scholar
  26. Gilchrist, G. W. (1995). Specialists and generalists in changing environments. I. Fitness landscapes of thermal sensitivity. The American Naturalist, 146(2), 252–270.CrossRefGoogle Scholar
  27. Gill, N., Khan, M. M., & Memon, M. S. (2003). Changes in blood parameters due to bladder worm (Cestoda) infection in liver of Rattus norvegicus. In Proceedings of the Pakistan Congress of Zoology, 23, 141–149.Google Scholar
  28. Gratz, N. G. (1999). Urbanization, arthropod and rodent pests and human health. In Proceedings of the 3rd International Conference on Urban Pests (pp. 19–22). Czech University of Agriculture, Prague, Czech Republic.Google Scholar
  29. Han, B. A., Schmidt, J. P., Bowden, S. E., & Drake, J. M. (2015). Rodent reservoirs of future zoonotic diseases. Proceedings of the National Academy of Sciences, 112(22), 7039–7044.CrossRefGoogle Scholar
  30. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978.CrossRefGoogle Scholar
  31. Hussain, I. (1998). Susceptibility to anticoagulants and the development of physiological resistance in Rattus norvegicus and Bandicota bengalensis. Ph.D. Thesis, School of Animal and Microbial Sciences, University of Reading, Reading Berkshire, U.K.Google Scholar
  32. Hussain, I., & Iqbal, M. A. (2002). Sampled from ration shops, Rawalpindi. Pakistan Journal of Zoology, 34(3), 239–242.Google Scholar
  33. Jarvis, A., Reuter, H. I., Nelson, A., & Guevara, E. (2008). Hole-filled seamless SRTM data V4. International Centre for Tropical Agriculture (CIAT).Google Scholar
  34. Kajdacsi, B., Costa, F., Hyseni, C., Porter, F., Brown, J., Rodrigues, G., & Caccone, A. (2013). Urban population genetics of slum-dwelling rats (Rattus norvegicus) in Salvador, Brazil. Molecular Ecology, 22(20), 5056–5070.CrossRefGoogle Scholar
  35. Khan, H. (2016). Rat bite cases continue to spike in Peshawar. Pakistan: The Express Tribune.Google Scholar
  36. Kosoy, O. I., Lambert, A. J., Hawkinson, D. J., Pastula, D. M., Goldsmith, C. S., Hunt, D. C., & Staples, J. E. (2015). Novel thogoto virus associated with febrile illness and death, United States, 2014. Emerging Infectious Diseases, 21(5), 760–764.CrossRefGoogle Scholar
  37. Kriticos, D. J., Webber, B. L., Leriche, A., Ota, N., Macadam, I., Bathols, J., & Scott, J. K. (2012). CliMond: global high resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods in Ecology and Evolution, 3, 53–64.  https://doi.org/10.1111/j.2041-210X.2011.00134.x.CrossRefGoogle Scholar
  38. Lack, J. B., Hamilton, M. J., Braun, J. K., Mares, M. A., & Van Den Bussche, R. A. (2013). Comparative phylogeography of invasive Rattus rattus and Rattus norvegicus in the US reveals distinct colonization histories and dispersal. Biological Invasions, 15(5), 1067–1087.CrossRefGoogle Scholar
  39. Lambert, M. S., Quy, R. J., Smith, R. H., & Cowan, D. P. (2008). The effect of habitat management on home-range size and survival of rural Norway rat populations. Journal of Applied Ecology, 45(6), 1753–1761.CrossRefGoogle Scholar
  40. Lima, M., Marquet, P. A., & Jaksic, F. M. (1999). El Nino events, precipitation patterns, and rodent outbreaks are statistically associated in semiarid Chile. Ecography, 22(2), 213–218.CrossRefGoogle Scholar
  41. Madsen, T., & Shine, R. (1999). Rainfall and rats: climatically driven dynamics of a tropical rodent population. Austral Ecology, 24(1), 80–89.CrossRefGoogle Scholar
  42. Marsh R. E., (1994) Roof rats. The handbook: prevention and control of wildlife damage. Paper 6.Google Scholar
  43. Meehan, A. P. (1984). Rats and mice. Their biology and control. Rentokil Ltd..Google Scholar
  44. Meerburg, B. G., Singleton, G. R., & Kijlstra, A. (2009). Rodent-borne diseases and their risks for public health. Critical Reviews in Microbiology, 35(3), 221–270.CrossRefGoogle Scholar
  45. Morand, S., Bordes, F., CHEN, H. W., Claude, J., COSSON, J. F., Galan, M., & Ribas, A. (2015). Global parasite and Rattus rodent invasions: the consequences for rodent-borne diseases. Integrative Zoology, 10(5), 409–423.CrossRefGoogle Scholar
  46. Mushtaq, M., Kayani, A. R., Nadeem, M. S., & Beg, M. A. (2014). Distribution Pattern of commensal rodents in shops of urban Rawalpindi, Pakistan. Pakistan Journal of Zoology, 46(6), 1585–1589.Google Scholar
  47. Ordog, G. J., Balasubramanium, S., & Wasserberger, J. (1985). Rat bites: fifty cases. Annals of Emergency Medicine, 14(2), 126–130.CrossRefGoogle Scholar
  48. Patz, J. A., Campbell-Lendrum, D., Holloway, T., & Foley, J. A. (2005). Impact of regional climate change on human health. Nature, 438(7066), 310–317.CrossRefGoogle Scholar
  49. Pedersen, P. O. (2001). Freight transport under globalisation and its impact on Africa. Journal of Transport Geography, 9(2), 85–99.CrossRefGoogle Scholar
  50. Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3), 231–259.CrossRefGoogle Scholar
  51. Rafique, A., Rana, S. A., Khan, H. A., & Sohail, A. (2009). Prevalence of some helminths in rodents captured from different city structures including poultry farms and human population of Faisalabad. Pakistan. Pakistan Vet. J, 29(3), 141–144.Google Scholar
  52. Roberts, T. J. (1997). The mammals of Pakistan. Oxford: Oxford University Press.Google Scholar
  53. Rothe, K., Tsokos, M., & Handrick, W. (2015). Animal and human bite wounds. Deutsches Ärzteblatt International, 112(25), 433–42; quiz 443.Google Scholar
  54. Roy, D. P., Wulder, M. A., Loveland, T. R., Woodcock, C. E., Allen, R. G., Anderson, M. C., & Scambos, T. A. (2014). Landsat-8: science and product vision for terrestrial global change research. Remote Sensing of Environment, 145, 154–172.CrossRefGoogle Scholar
  55. Shih, W. J. (2002). Problems in dealing with missing data and informative censoring in clinical trials. Current Controlled Trials in Cardiovascular Medicine, 3(1), 4.CrossRefGoogle Scholar
  56. Stenseth, N. C., Leirs, H., Skonhoft, A., Davis, S. A., Pech, R. P., Andreassen, H. P., & Zhang, Z. (2003). Mice, rats, and people: the bio-economics of agricultural rodent pests. Frontiers in Ecology and the Environment, 1(7), 367–375.CrossRefGoogle Scholar
  57. Stojcevic, D., Mihaljevic, Z., & Marinculic, A. (2004). Parasitological survey of rats in rural regions of Croatia. Veterinary Medicine Czech, 49, 70–74.CrossRefGoogle Scholar
  58. Tamayo-Uria, I., Mateu, J., Escobar, F., & Mughini-Gras, L. (2014). Risk factors and spatial distribution of urban rat infestations. Journal of Pest Science, 87(1), 107–115.CrossRefGoogle Scholar
  59. Timilsina, G. R., & Shrestha, A. (2009). Transport sector CO2 emissions growth in Asia: underlying factors and policy options. Energy Policy, 37(11), 4523–4539.CrossRefGoogle Scholar
  60. Traweger, D., & Slotta-Bachmayr, L. (2005). Introducing GIS-modelling into the management of a brown rat (Rattus norvegicus Berk.) (Mamm. Rodentia Muridae) population in an urban habitat. Journal of Pest Science, 78, 17–24.CrossRefGoogle Scholar
  61. Traweger, D., Travnitzky, R., Moser, C., Walzer, C., & Bernatzky, G. (2006). Habitat preferences and distribution of the brown rat (Rattus norvegicus Berk.) in the city of Salzburg (Austria): implications for an urban rat management. Journal of Pest Science, 79(3), 113–125.CrossRefGoogle Scholar
  62. Ullah, Z., Khan, H., Waseem, A., Mahmood, Q., & Farooq, U. (2013). Water quality assessment of the River Kabul at Peshawar, Pakistan: industrial and urban wastewater impacts. Journal of Water Chemistry and Technology, 35(4), 170–176.CrossRefGoogle Scholar
  63. Venette, R. C. (Ed.). (2015). Pest risk modelling and mapping for invasive alien species (vol. 7). CABI.Google Scholar
  64. White, J., Horskins, K., & Wilson, J. (1998). The control of rodent damage in Australian macadamia orchards by manipulation of adjacent non-crop habitats. Crop Protection, 17(4), 353–357.Google Scholar
  65. Wykes, W. N. (1989). Rat bite injury to the eyelids in a 3-month-old child. British Journal of Ophthalmology, 73(3), 202–204.CrossRefGoogle Scholar
  66. Yan, X., Zhenyu, L., Gregg, W. P., & Dianmo, L. (2001). Invasive species in China—an overview. Biodiversity & Conservation, 10(8), 1317–1341.CrossRefGoogle Scholar
  67. Young, N., Carter, L., & Evangelista, P. (2011). A MaxEnt model v3. 3.3 e tutorial (ArcGIS v10). Colorado: Fort Collins.Google Scholar
  68. Zaidi, F., Fatima, S. H., Khisroon, M., & Gul, A. (2016). Distribution modeling of three screwworm species in the ecologically diverse landscape of North West Pakistan. Acta Tropica, 162, 56–65.CrossRefGoogle Scholar
  69. Zareef, S., Nasim, S., Kalsoom, S., Jabeen, F., Javed, Z., Nadeem, M. S., & Beg, M. A. (2009). Occurrence of the Norway rat, Rattus norvegicus, in Rawalpindi and Islamabad. Pakistan Journal of Zoology, 41(5), 415–416.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Syeda Hira Fatima
    • 1
  • Farrah Zaidi
    • 2
  • Muhammad Adnan
    • 2
  • Asad Ali
    • 1
  • Qaiser Jamal
    • 2
  • Muhammad Khisroon
    • 2
  1. 1.Department of Space ScienceInstitute of Space TechnologyIslamabadPakistan
  2. 2.Zoology DepartmentUniversity of PeshawarPeshawarPakistan

Personalised recommendations