Advertisement

Accumulation and dynamics of manganese content in bilberry (Vaccinium myrtillus L.)

  • E. Kula
  • E. Wildová
  • P. Hrdlička
Article
  • 104 Downloads

Abstract

In a specific area of the Krušné Hory Mts. (Ore Mountains), Czech Republic, branches and leaves of bilberry (Vaccinium myrtillus L.) were collected during the growing seasons in 2010–2016 on the low-pH soil (2.77–3.62) with a high total content of manganese (490–6277 mg kg−1 dwt.). Mn content in leaves occurred in a wide range (274–11,159 mg kg−1) and was markedly increased during the growing season with the exception of year 2015, when the leaves dried out early due to the precipitation deficit. New leaves exhibited the Mn content corresponding to the beginning of the growing season. Mn content in branches was comparable both in the years of collection (including 2015) and in the respective growing seasons (2062–3885 mg kg−1). The content of manganese in bilberry leaves was dependent on the cumulated amount of precipitation (p < 10−6; r2 = 0.4962) and on the cumulated amount of water in the soil captured in lysimeters (p = 0.00003; r2 = 0.4520).

Hyperaccumulation of manganese in bilberry was confirmed as well as its continuous increase during the vegetation seasons. The manganese content in leaves of bilberry showed positive correlation with soil moisture. For the assessment of bilberry condition (nutrition), the collection of samples should be made towards the end of the growing season, closely before the onset of senescence.

Keywords

Hyperaccumulation Manganese Seasonal dynamics Soil moisture Vaccinium myrtillus L. 

Notes

Funding information

The study was financially supported by the Students Grant Agency, J.E. Purkyně University in Ústí nad Labem, within Project 44201 15 007501: “Accumulation of manganese in the leaves of bilberry (Vaccinium myrtillus L.) in the growing season and interaction with the manganese load in the soil.” The research was supported by the companies Nadace ČEZ, a.s. Prague; Netex s.r.o. Děčín; and Lafarge cement a.s., Čížkovice.

References

  1. Adriano, D. C. (2001). Trace elements in the terrestrial environment: biogeochemistry, bioavailability, and risk of metal. (Second ed., Trace elements in the terrestrial environment, 2nd edition., 867 pp.). New York, Berlin, Heidelberg: Springer Verlag, 867 pp.Google Scholar
  2. Baker, A. J. M. (1981). Accumulators and excluders - strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3(1–4), 643–654.CrossRefGoogle Scholar
  3. Baker, A. J. M., & Brooks, R. R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements - a review of their distribution, ecology and phytochemistry. Biorecovery, 1, 81–126.Google Scholar
  4. Bergmann, W. (1988). Ernährungsstörungen bei Kulturpflanzen. (Entstehung, visuelle und analytische Diagnose). Jena: VEB Gustav Fischer Verlag, p. 223 pp.Google Scholar
  5. Białońska, D., Zobel, A. M., Kuraś, M., Tykarska, T., & Sawicka-Kapusta, K. (2007). Phenolic compounds and cell structure in bilberry leaves affected by emissions from a Zn–Pb smelter. Water, Air, and Soil Pollution, 181, 123–133.  https://doi.org/10.1007/s11270-006-9284-x.CrossRefGoogle Scholar
  6. Coudon, C., & Gégout, J.-C. (2007). Quantitative prediction of the distribution and abundance of Vaccinium myrtillus with climatic and edaphic factors. Journal of Vegetation Science, 18(4), 517–524.CrossRefGoogle Scholar
  7. Mora, M. L., Rosas, A., Ribera, A., & Rengel, Z. (2009). Differential tolerance to Mn toxicity in perennial ryegrass genotypes: involvement of antioxidative enzymes and root exudation of carboxylates. Plant and Soil, 320(1–2), 79–89.  https://doi.org/10.1007/s11104-008-9872-1.CrossRefGoogle Scholar
  8. Fernando, D. R., & Lynch, J. P. (2015). Manganese phytotoxicity: new light on an old problem. Annals of Botany, 116(3), 313–319.  https://doi.org/10.1093/aob/mcv111.CrossRefGoogle Scholar
  9. Fernando, D. R., Baker, A. J. M., & Woodrow, I. E. (2009a). Physiological responses in Macadamia integrifolia on exposure to manganese treatment. Australian Journal of Botany, 57(5), 406–413.  https://doi.org/10.1071/BT09077.CrossRefGoogle Scholar
  10. Fernando, D. R., Guymer, G., Reeves, R. D., Woodrow, I. E., Baker, A. J. M., & Batianoff, G. N. (2009b). Foliar Mn accumulation in eastern Australian herbarium specimens: prospecting for ‘new’ Mn hyperaccumulators and potential applications in taxonomy. Annals of Botany, 103(6), 931–939.  https://doi.org/10.1093/aob/mcp013.CrossRefGoogle Scholar
  11. Fiala, P., Reininger, D., Samek, T., Němec, P., & Sušil, A. (2013). A survey of nutrition forest in the Czech Republic, 1996-2011. Brno: Central Institute for Supervising and Testing in Agriculture 150 pp.Google Scholar
  12. Führs, H., Specht, A., Erban, A., Kopka, J., & Horst, W. J. (2012). Functional associations between the metabolome and manganese tolerance in Vigna unguiculata. Journal of Experimental Botany, 63(1), 329–340.  https://doi.org/10.1093/jxb/err276.CrossRefGoogle Scholar
  13. Heenan, D. P., & Campbell, C. L. (1980). Growth, yield components and seed composition of two soybean cultivars as affected by manganese supply. Australian Journal of Agricultural Research, 31(3), 471–476.  https://doi.org/10.1071/AR9800471.CrossRefGoogle Scholar
  14. Horiguchi, T. (1987). Mechanism of manganese toxicity and tolerance of plants. Soil Science and Plant Nutrition, 33(4), 595–606.CrossRefGoogle Scholar
  15. Hrdlička, P., & Kula, E. (2004). Changes in the chemical content of birch (Betula pendula Roth) leaves in the air polluted Krusne hory mountains. Trees - Structure and Function, 18(2), 237–244.  https://doi.org/10.1007/s00468-003-0301-z.CrossRefGoogle Scholar
  16. Kabata-Pendias, A. (2004). Soil–plant transfer of trace elements-an environmental issue. Geoderma, 122, 143–149.CrossRefGoogle Scholar
  17. Kabata-Pendias, A. (2011). Trace elements in soil and plants (Fourth ed.). Boca Raton: CRC Press 520 pp.Google Scholar
  18. Kandziora-Ciupa, M., Ciepal, R., Nadgórska-Socha, A., & Barczyk, G. (2013). A comparative study of heavy metal accumulation and antioxidant responses in Vaccinium myrtillus L. leaves in polluted and non-polluted areas. Environmental Science and Pollution Research, 20(7), 4920–4932.  https://doi.org/10.1007/s11356-012-1461-4.CrossRefGoogle Scholar
  19. Kitao, M., Lei, T. T., Nakamura, T., & Koike, T. (2001). Manganese toxicity as indicated by visible foliar symptoms of Japanese white birch (Betula platyphylla var. japonica). Environmental Pollution, 111(1), 89–94.CrossRefGoogle Scholar
  20. Korcak, R. F. (1989). Variation in nutrient requirements of blueberries and other calcifuges. Hort Science, 24, 573–578.Google Scholar
  21. Kukla, J., & Kuklová, M. (2008). Growth of Vaccinium myrtillus L. (Ericaceae) in spruce forests damaged by air pollution. Polish Journal of Ecology, 56(1), 149–155.Google Scholar
  22. Kula, E., Hrdlička, P., Hedbávný, J., & Švec, P. (2012). Various content of manganese in selected forest tree species and plants in the undergrowth. Beskydy, 5(1), 19–26.CrossRefGoogle Scholar
  23. Kula, E., Martinek, P., Chromcova, L., & Hedbavny, J. (2014). Development of Lymantria dispar affected by manganese in food. Environmental Science and Pollution Research, 21(20), 11987–11997.  https://doi.org/10.1007/s11356-014-3075-5.CrossRefGoogle Scholar
  24. Laboratory-Morava. (2010). Standardized internal laboratory methods for chemical analyses soil and plant (p. 30). Studénka: Laboratory Morava, Inc., accredited laboratory.Google Scholar
  25. Lazorík, M., & Kula, E. (2015). Impact of weather and habitat on the occurrence of centipedes, millipedes and terrestrial isopods in mountain spruce forests. Folia Oecologica, 42(2), 103–112.Google Scholar
  26. Liu, P., Tang, X., Gong, C., & Xu, G. (2010). Manganese tolerance and accumulation in six Mn hyperaccumulators or accumulators. Plant and Soil, 335(1–2), 385–395.  https://doi.org/10.1007/s11104-010-0427-x.CrossRefGoogle Scholar
  27. Marschner, H. (2006). Mineral nutrition of higher plants (Second ed.). Amsterdam: Academic Press 890 pp.Google Scholar
  28. Memon, A. R., & Yatazawa, M. (1982). Chemical nature of manganese in the leaves of manganese accumulator plants. Soil Science and Plant Nutrition, 28(3), 401–412.CrossRefGoogle Scholar
  29. Memon, A. R., & Yatazawa, M. (1984). Nature of manganese complexes in manganese accumulator plant – Acanthopanax sciadophylloides. Journal of Plant Nutrition, 7(6), 961–974.CrossRefGoogle Scholar
  30. Memon, A. R., Chino, M., Hidaka, H., Hara, K., & Yatazawa, M. (1981). Manganese toxicity in field grown tea plants and the microdistribution of manganese in the leaf tissues as revealed by electron probe X-ray micrography. Soil Science and Plant Nutrition, 27(3), 317–328.  https://doi.org/10.1080/00380768.1981.10431286.CrossRefGoogle Scholar
  31. Mengel, K., & Kirkby, E. A. (2001). Principles of plant nutrition (5rd ed.). Dordrecht: Kluwer Academic Publishers 593 pp.CrossRefGoogle Scholar
  32. Migocka, M., & Klobus, G. (2007). The properties of the Mn, Ni and Pb trasport operating at plasma membranes of cucumber roots. Physiologia Plantarum, 129(3), 578–587.  https://doi.org/10.1111/j.1399-3054.2006.00842.x.CrossRefGoogle Scholar
  33. Mikkonen, H., & Huttunen, S. (1981). Dwarf shrubs as bioindicator. Silva Fennica, 15(4), 475–480.CrossRefGoogle Scholar
  34. Moroni, J. S., Scott, B. J., & Wratten, N. (2003). Differential tolerance of high manganese among rapeseed genotypes. Plant and Soil, 253(2), 507–519.CrossRefGoogle Scholar
  35. Mróz, L., & Demczuk, M. (2010). Contents of phenolics and chemical elements in bilberry (Vaccinium myrtillus L.) leaves from copper smelter area (SW Poland). Polish Journal of Ecology, 58(3), 475–486.Google Scholar
  36. Parzych, A. (2014). The heavy metal content of soil and shoots of Vaccinium myrtillus L. in the Słowiński National Park. Forest Research Papers, 75(3), 217–224.  https://doi.org/10.2478/frp-2014-0020. CrossRefGoogle Scholar
  37. Parzych, A. (2016). Accumulation and distribution of nutrients in shoots of Vaccinium vitis−idaea L. and Vaccinium myrtillus L. Sylwan, 160(1), 40–48.Google Scholar
  38. Peng, K., Luo, C., You, W., Lian, C., Li, X., & Shen, Z. (2008). Manganese uptake and interactions with cadmium in the hyperaccumulator—Phytolacca Americana L. Journal of Hazardous Materials, 154(1–3), 674–681.  https://doi.org/10.1016/j.jhazmat.2007.10.080.CrossRefGoogle Scholar
  39. Pittman, J. K. (2005). Managing the manganese: molecular mechanisms of manganese transport and homestasis. New Phytologist, 167(3), 733–742.  https://doi.org/10.1111/j.1469-8137.2005.01453.x.CrossRefGoogle Scholar
  40. Pokladníková, H., Rožnovský, J., & Mužíková, B. (2008) Selected agro-climatic characteristics of the Czech Republic on the basis of climatic data in the grid 10 km. In J. Rožnovský, & T. Litschmann (Eds.), Bioclimatological aspects of the evaluation process in the country, Mikulov, Czech Republic, (pp. 1–8).Google Scholar
  41. Reeves, R. D. (2006). Hyperaccumulation of trace elements by plants. In J.-L. Morel, G. Echevarria, & N. Goncharova (Eds.), Phytoremediation of metal-contaminated soils (pp. 25–52, Nato Science, Vol. 68). Berlin: Springer.Google Scholar
  42. Reimann, C., Koller, F., Frengstad, B., Kashulina, G., Niskavaara, H., & Englmaier, P. (2001a). Comparison of the element composition in several plant species and their substrate from a 1 500 00-km2 area in Northern Europe. The Science of the Total Environment, 278, 87–112.CrossRefGoogle Scholar
  43. Reimann, C., Koller, F., Kashulina, G., Niskavaara, H., & Englmaier, P. (2001b). Influence of extreme pollution on the inorganic chemical composition of some plants. Environmental Poluttion, 115, 239–252.CrossRefGoogle Scholar
  44. Salemaa, M., Derome, J., Helmisaari, H.-S., Nieminen, T., & Vanha-Majamaa, I. (2004). Element accumulation in boreal bryophytes, lichens and vascular plants exposed to heavy metal and sulfur deposition in Finland. Science of the Total Environment, 324(1–3), 141–160.  https://doi.org/10.1016/j.scitotenv.2003.10.025.CrossRefGoogle Scholar
  45. SEPAS. (2010). Environmental quality criteria for forest landscapes. Stockholm: Swedish Environmental Protection Agency 18 pp.Google Scholar
  46. Sheppard, S. C. (1991). A field and literature survey, with interpretation, of element concentration in blueberry (Vaccinium angustifolium). Canadian Journal of Botany, 69, 63–77, doi:alt ISSN 1916-2790.Google Scholar
  47. Sims, T. J. (2000). Soil test phosphorus: Mehlich 3. In G. M. Pierzynski (Ed.), Methods of phosphorus analysis for soils, sediments, residuals, and waters (Vol. Southern Cooperative Series Bulletin No. # 396, pp. 17–19). Kansas State University: Department of Agronomy, 2004 Throckmorton Plant Sciences Ctr.Google Scholar
  48. Slodičák, M., Balcar, V., Novák, J., & Šrámek, V. (2008). Forestry management in the Krušné hory Mts (Vol. 03). Hradec Kralove: Grant Agency of the Forests of the Czech Republic 480 pp.Google Scholar
  49. Sobíšek, B., Munzar, J., Krška, K., et al. (1993). Meteorological dictionary interpretation & terminology (p. 594). Academia: Prague.Google Scholar
  50. StatSoft Inc. (2012). STATISTICA (data analysis software system), version 12.Google Scholar
  51. Taulavuori, K., Laine, K., & Taulavuori, E. (2013). Experimental studies on Vaccinium myrtillus and Vaccinium vitis-idaea in relation to air pollution and global change at northern high latitudes: a review. Environmental and Experimental Botany, 87, 191–196.  https://doi.org/10.1016/j.envexpbot.2012.10.002.CrossRefGoogle Scholar
  52. Uhlig, C., & Junttila, O. (2001). Airborne heavy metal pollution and its effects on foliar elemental composition of Empetrum hermaphroditum and Vaccinium myrtillus in Sor-Varanger, northern Norway. Environmental Poluttion, 114, 461–469.CrossRefGoogle Scholar
  53. Uhlig, C., Salemaa, M., Vanha-Majamaa, I., & Derome, J. (2001). Element distribution in Empetrum nigrum microsites at heavy metal contaminated sites in Harjavalta, western Finland. Environmetal Pollution, 112(3), 435–442.CrossRefGoogle Scholar
  54. UN-ECE (2016). Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forest. In Sampling and analysis of needles and leaves (Vol. part XII, pp. 1–19). Eberswalde, Germany: UN ECE.Google Scholar
  55. Xu, X., Shi, J., Chen, Y., Chen, X., Wang, H., & Perera, A. (2006). Distribution and mobility of manganese in the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Plant and Soil, 285(1–2), 323–331.  https://doi.org/10.1007/s11104-006-9018-2.CrossRefGoogle Scholar
  56. Reeves, R. D., Baker, A. J. M., Lin, Q., & Fernando, D. R. (2004). Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Environmental Pollution, 131, 393–399.  https://doi.org/10.1016/j.envpol.2004.03.011.
  57. Xue, S., Zhu, F., Wu, C., Lei, J., Hartley, W., & Pan, W. (2016). Effects of manganese on the microstructures of Chenopodium ambrosioides L., a manganese tolerant plant. International Journal of Phytoremediation, 18(7), 710–719.  https://doi.org/10.1080/15226514.2015.1131233.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Forestry and Wood TechnologyMendel University in BrnoBrnoCzech Republic
  2. 2.Faculty of EnvironmentJan Evangelista Purkyně University in Ústí nad LabemÚstí nad LabemCzech Republic
  3. 3.Faculty of AgriSciencesMendel University in BrnoBrnoCzech Republic

Personalised recommendations