Advertisement

Nitrate uptake in an agricultural stream estimated from high-frequency, in-situ sensors

  • Christopher S. Jones
  • Sea-won Kim
  • Thomas F. Wilton
  • Keith E. Schilling
  • Caroline A. Davis
Article

Abstract

Real-time, continuous, in situ water quality sensors were deployed on a fourth-order Iowa (U.S.) stream draining an agricultural watershed to evaluate key in-stream processes affecting concentrations of nitrate during a 24-day late summer (Aug–Sep) period. Overall, nitrate-nitrogen (NO3-N) concentrations declined 0.11 mg L−1 km−1, or about 1.9% km−1 and 35% in total across 18 km. We also calculated stream metabolic rates using in situ dissolved oxygen data and determined stream biotic N demand to be 108–117 mg m−2 day−1. From this, we estimate that 11% of the NO3-N concentration decline measured between two in-situ sensors separated by 2 km was a result of biotic NO3-N demand, while groundwater NO3-N data and estimates of groundwater flow contributions indicate that dilution was responsible for 53%. Because the concentration decline extends linearly across the entire 18 km of stream length, these processes seem consistent throughout the basin downstream of the most upstream sensor site. The nitrate-dissolved oxygen relationship between the two sites separated by 2 km, calculations of biotic NO3-N demand, and diurnal variations in NO3-N concentration all indicate that denitrification by anaerobes is removing less NO3-N than that assimilated by aquatic organisms unable to fix nitrogen for their life processes, and thus the large majority of the NO3-N entering this stream is not retained or removed, but rather transported downstream.

Keywords

Nitrate nitrogen Biotic N demand Assimilation Denitrification In-situ sensor 

Abbreviations

CR

Community respiration

GPP

Gross primary production

NP

Net production

NO3-N

Nitrate-nitrogen

Notes

Acknowledgments

This publication was prepared by the authors with funds from the Iowa Nutrient Research Center. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Iowa Nutrient Research Center or Iowa State University.

Supplementary material

10661_2018_6599_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 18 kb)

References

  1. Alexander, R. B., Smith, R. A., & Schwarz, G. E. (2000). Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature, 403(6771), 758–761.CrossRefGoogle Scholar
  2. Amado, A. A., Schilling, K. E., Jones, C. S., Thomas, N., & Weber, L. J. (2017). Estimation of tile drainage contribution to streamflow and nutrient loads at the watershed scale based on continuously monitored data. Environmental Monitoring and Assessment, 189(9), 426.CrossRefGoogle Scholar
  3. Anderson P.F. (1996) GIS research to digitize maps of Iowa 1832–1859 vegetation from general land office township plat maps. Available via http://www.public.iastate.edu/∼fridolph/dnrglo.html. Cited 8 December 2016.
  4. Anderson J., Huggins D.G. (2003) Production calculator, version 1.5 operations manual. In: Report No 131. Kansas Biological Survey. Central Plains Center for Bioassessment. University of Kansas. Available via http://cpcb.ku.edu/publications/. Cited 18 May 2017.
  5. Baker, J. L., Campbell, K. L., Johnson, H. P., & Hanway, J. J. (1975). Nitrate, phosphorus, and sulfate in subsurface drainage water. Journal of Environmental Quality, 4(3), 406–412.CrossRefGoogle Scholar
  6. Bende-Michl, U., Verburg, K., & Cresswell, H. P. (2013). High-frequency nutrient monitoring to infer seasonal patterns in catchment source availability, mobilisation and delivery. Environmental Monitoring and Assessment, 185(11), 9191–9219.CrossRefGoogle Scholar
  7. Bernhardt, E. S., Likens, G. E., Hall Jr., R. O., Buso, D. C., Fisher, S. G., Burton, T. M., Meyer, J. L., McDowell, W. H., Mayer, M. S., Bowden, W. B., & Findlay, S. E. (2005). Can't see the forest for the stream? In-stream processing and terrestrial nitrogen exports. Bioscience, 55(3), 219–230.CrossRefGoogle Scholar
  8. Bieroza, M. Z., Heathwaite, A. L., Mullinger, N. J., & Keenan, P. O. (2014). Understanding nutrient biogeochemistry in agricultural catchments: the challenge of appropriate monitoring frequencies. Environmental Science: Processes & Impacts, 16(7), 1676–1691.Google Scholar
  9. Birgand, F., Skaggs, R. W., Chescheir, G. M., & Gilliam, J. W. (2007). Nitrogen removal in streams of agricultural catchments—a literature review. Critical Reviews in Environmental Science and Technology, 37(5), 381–487.CrossRefGoogle Scholar
  10. Böhlke, J. K., & Denver, J. M. (1995). Combined use of groundwater dating, chemical, and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic coastal plain, Maryland. Water Resources Research, 31(9), 2319–2339.CrossRefGoogle Scholar
  11. Bott, T. L. (1996). Primary productivity and community respiration. In F. R. Hauer & G. A. Lamberti (Eds.), Methods in stream ecology. San Diego: Academic Press.Google Scholar
  12. Cohen, M.J., Heffernan, J.B., Albertin, A. and Martin, J.B. (2012). Inference of riverine nitrogen processing from longitudinal and diel variation in dual nitrate isotopes. Journal of Geophysical Research: Biogeosciences, 117(G1).Google Scholar
  13. David, M. B., & Gentry, L. E. (2000). Anthropogenic inputs of nitrogen and phosphorus and riverine export for Illinois, USA. Journal of Environmental Quality, 29(2), 494–508.CrossRefGoogle Scholar
  14. Davis, C. A., Ward, A. S., Burgin, A. J., Loecke, T. D., Riveros-Iregui, D. A., Schnoebelen, D. J., Just, C. L., Thomas, S. A., Weber, L. J., & St Clair, M. A. (2014). Antecedent moisture controls on stream nitrate flux in an agricultural watershed. Journal of Environmental Quality, 43(4), 1494–1503.CrossRefGoogle Scholar
  15. Dideriksen R.O., LaVan M.R., Norwood K.K., Steckly S.R., Steele J.E. (2007) Soil survey of Iowa County, Part 1. USDA-NRCS. Available via http://www.nrcs.usda.gov/Internet/FSE_MANUSCRIPTS/iowa/IA095/0/Iowa_IA_Part_1.pdf. Cited 10 May 2017.
  16. Duff, J. H., Tesoriero, A. J., Richardson, W. B., Strauss, E. A., & Munn, M. D. (2008). Whole-stream response to nitrate loading in three streams draining agricultural landscapes. Journal of Environmental Quality, 37(3), 1133–1144.CrossRefGoogle Scholar
  17. Ferber, D. (2001). Keeping the stygian waters at bay. Science, 291, 968–973.CrossRefGoogle Scholar
  18. Freeze R.A., Cherry J.A. (1979) Groundwater. Prentice—Hall Inc, Englewood Cliffs New Jersey, p 604.Google Scholar
  19. Grace M.R., Imberger S.J., (2006) Stream metabolism: performing & interpreting measurements. In: Water Studies Centre Monash University, Murray Darling Basin Commission and New South Wales Department of Environment and Climate Change, p 204.Google Scholar
  20. Guerrero MG. (1985) Assimilatory nitrate reduction. InTechniques in Bioproductivity and Photosynthesis (Second Edition) (pp. 165–172).Google Scholar
  21. Heffernan, J. B., & Cohen, M. J. (2010). Direct and indirect coupling of primary production and diel nitrate dynamics in a subtropical spring-fed river. Limnology and Oceanography, 55(2), 677–688.CrossRefGoogle Scholar
  22. Hensley, R. T., Cohen, M. J., & Korhnak, L. V. (2015). Hydraulic effects on nitrogen removal in a tidal spring-fed river. Water Resources Research, 51(3), 1443–1456.CrossRefGoogle Scholar
  23. Highland J.D., Dideriksen R.I. (1967) Soil survey of Iowa County. In: USDA-NRCS. Available via http://www.nrcs.usda.gov/Internet/FSE_MANUSCRIPTS/iowa/iowaIA1967/Iowa_IA.pdf. Cited 11 May 2017.
  24. Hubbard, L., Kolpin, D. W., Kalkhoff, S. J., & Robertson, D. M. (2011). Nutrient and sediment concentrations and corresponding loads during the historic June 2008 flooding in eastern Iowa. Journal of Environmental Quality, 40(1), 166–175.CrossRefGoogle Scholar
  25. Ikenberry, C. D., Soupir, M. L., Schilling, K. E., Jones, C. S., & Seeman, A. (2014). Nitrate-nitrogen export: magnitude and patterns from drainage districts to downstream river basins. Journal of Environmental Quality, 43(6), 2024–2033.CrossRefGoogle Scholar
  26. Isenhart, T. M., & Crumpton, W. G. (1989). Transformation and loss of nitrate in an agricultural stream. Journal of Freshwater Ecology, 5(2), 123-129.Google Scholar
  27. Jones, C. S., Kim, S.-W., & Schilling, K. E. (2017a). Use of continuous monitoring to assess stream nitrate flux and transformation patterns. Environmental Monitoring and Assessment, 189(1), 35.CrossRefGoogle Scholar
  28. Jones, C. S., Wang, B., Schilling, K. E., & Chan, K.-S. (2017b). Nitrate transport and supply limitations quantified using high-frequency stream monitoring and turning point analysis. Journal of Hydrology, 549, 581–591.CrossRefGoogle Scholar
  29. Justić, D., Rabalais, N. N., & Turner, R. E. (1995). Stoichiometric nutrient balance and origin of coastal eutrophication. Marine Pollution Bulletin, 30(1), 41–46.CrossRefGoogle Scholar
  30. Knowles R. (1990) Acetylene inhibition technique: development, advantages, and potential problems. In: Denitrification in soil and sediment, Springer, US, pp. 151–166.Google Scholar
  31. Kunz, J. V., Hensley, R., Brase, L., Borchardt, D., & Rode, M. (2016). Direct measurements of in-stream nitrate uptake with automated high frequency sensors. InEGU General Assembly Conference Abstracts, 18, 4598.Google Scholar
  32. Leming, T. D., & Stuntz, W. E. (1984). Zones of coastal hypoxia revealed by satellite scanning have implications for strategic fishing. Nature, 310(5973), 136–138.CrossRefGoogle Scholar
  33. Lewis Jr., W. M. (2002). Yield of nitrogen from minimally disturbed watersheds of the United States. In The nitrogen cycle at regional to global scales (pp. 375–385). Netherlands: Springer.CrossRefGoogle Scholar
  34. Loperfido J.V., Just C.L., Papanicolaou, A.N., Schnoor J.L. (2010) In situ sensing to understand diel turbidity cycles, suspended solids, and nutrient transport in Clear Creek, Iowa. Water Resources Research 46(6).Google Scholar
  35. Melching, C. S., & Flores, H. E. (1999). Reaeration equations derived from US geological survey database. Journal of Environmental Engineering, 125(5), 407–414.CrossRefGoogle Scholar
  36. Mesonet, I.E., 2008. Iowa State University Department of Agronomy. Precipitation and other climate information available at http://mesonet.agron.iastate.edu/climodat/index.phtml.
  37. Miller, M. P., Tesoriero, A. J., Capel, P. D., Pellerin, B. A., Hyer, K. E., & Burns, D. A. (2016). Quantifying watershed-scale groundwater loading and in-stream fate of nitrate using high-frequency water quality data. Water Resources Research, 52(1), 330–347.CrossRefGoogle Scholar
  38. Minitab, I.N.C., 2000. MINITAB statistical software. Minitab Release, 13.Google Scholar
  39. Mulholland, P. J. (2004). The importance of in-stream uptake for regulating stream concentrations and outputs of N and P from a forested watershed: evidence from long-term chemistry records for Walker branch watershed. Biogeochemistry, 70(3), 403–426.CrossRefGoogle Scholar
  40. Mulholland, P. J., Helton, A. M., Poole, G. C., Hall, R. O., Hamilton, S. K., Peterson, B. J., Tank, J. L., Ashkenas, L. R., Cooper, L. W., Dahm, C. N., & Dodds, W. K. (2008). Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature, 452(7184), 202–205.CrossRefGoogle Scholar
  41. Newbold J.D. (1992) Cycles and spirals of nutrients. In: The rivers handbook, 1, pp379–408.Google Scholar
  42. Newbold, J. D., Elwood, J. W., O'Neill, R. V., & Van Winkle, W. (1981). Measuring nutrient spiralling in streams. Canadian Journal of Fisheries and Aquatic Sciences, 38(7), 860–863.CrossRefGoogle Scholar
  43. Newbold, J. D., O'Neill, R. V., Elwood, J. W., & Van Winkle, W. (1982). Nutrient spiralling in streams: implications for nutrient limitation and invertebrate activity. The American Naturalist, 120(5), 628–652.CrossRefGoogle Scholar
  44. Nuzzo, V. A. (1986). Extent and status of Midwest oak savanna: presettlement and 1985. Natural Areas Journal, 6–36.Google Scholar
  45. O’Brien, J.M., & Dodds,W. K. (2010). Saturation of NO3 uptake in prairie streams as a function of acute and chronic N exposure. Journal of the North American Benthological Society, 29(2), 627–635.Google Scholar
  46. O’Brien, J. M., Dodds, W. K., Wilson, K. C., Murdock, J. N., & Eichmiller, J. (2007). The saturation of N cycling in Central Plains streams: 15N experiments across a broad gradient of nitrate concentrations. Biogeochemistry, 84(1), 31–49.CrossRefGoogle Scholar
  47. Odum, H. T. (1956). Primary production in flowing waters. Limnology and Oceanography, 1(2), 102–117.CrossRefGoogle Scholar
  48. Papanicolaou, A. N., Elhakeem, M., Wilson, C., Burras, C. L., & Oneal, B. (2008). Observations of soils at the hillslope scale in the Clear Creek watershed in Iowa, USA. Soil Horizons, 49(4), 83–86.CrossRefGoogle Scholar
  49. Peterson, B. J., Wollheim, W. M., Mulholland, P. J., Webster, J. R., Meyer, J. L., Tank, J. L., Martí, E., Bowden, W. B., Valett, H. M., Hershey, A. E., & McDowell, W. H. (2001). Control of nitrogen export from watersheds by headwater streams. Science, 292(5514), 86–90.CrossRefGoogle Scholar
  50. Prior, J. C. (1991). Landforms of Iowa. University of Iowa Press.Google Scholar
  51. Rabalais, N. N. (2002). Nitrogen in aquatic ecosystems. Ambio: A Journal of the Human Environment, 31(2), 102–112.CrossRefGoogle Scholar
  52. Rayburn, A. P., & Schulte, L. A. (2009). Landscape change in an agricultural watershed in the US Midwest. Landscape and Urban Planning, 93(2), 132–141.CrossRefGoogle Scholar
  53. Reay, D. S., Nedwell, D. B., Priddle, J., & Ellis-Evans, J. C. (1999). Temperature dependence of inorganic nitrogen uptake: reduced affinity for nitrate at suboptimal temperatures in both algae and bacteria. Applied and Environmental Microbiology, 65(6), 2577–2584.Google Scholar
  54. Renaud, M. L. (1986). Hypoxia in Louisiana coastal waters during 1983: implications for fisheries. Fishery Bulletin, 84, 19–26.Google Scholar
  55. Rolston, D. E. (1981). Nitrous oxide and nitrogen gas production in fertilizer loss. In C. C. Delwiche (Ed.), Denitrification, nitrification, and atmospheric nitrous oxide. New York: John Wiley & Sons.Google Scholar
  56. Royer, T. V., Tank, J. L., & David, M. B. (2004). Transport and fate of nitrate in headwater agricultural streams in Illinois. Journal of Environmental Quality, 33(4), 1296–1304.CrossRefGoogle Scholar
  57. Rozemeijer, J. C., Van der Velde, Y., Van Geer, F. C., De Rooij, G. H., Torfs, P. J., & Broers, H. P. (2010). Improving load estimates for NO3 and P in surface waters by characterizing the concentration response to rainfall events. Environmental Science & Technology, 44(16), 6305–6312.CrossRefGoogle Scholar
  58. Schilling, K. E., & Jacobson, P. (2014). Effectiveness of natural riparian buffers to reduce subsurface nutrient losses to incised streams. Catena, 114, 140–148.CrossRefGoogle Scholar
  59. Schilling, K. E., Zhang, Y. K., & Drobney, P. (2004). Water table fluctuations near an incised stream, Walnut Creek, Iowa. Journal of Hydrology, 286(1), 236–248.CrossRefGoogle Scholar
  60. Schilling, K. E., Li, Z., & Zhang, Y. K. (2006). Groundwater–surface water interaction in the riparian zone of an incised channel, Walnut Creek, Iowa. Journal of Hydrology, 327(1), 140–150.CrossRefGoogle Scholar
  61. Schilling, K. E., Jones, C. S., Seeman, A., Bader, E., & Filipiak, J. (2012). Nitrate-nitrogen patterns in engineered catchments in the upper Mississippi River basin. Ecological Engineering, 42, 1–9.CrossRefGoogle Scholar
  62. Schilling, K., Streeter, M., Hutchinson, K., Wilson, C., Abban, B., Wacha, K., & Papanicolaou, A. (2015). Effects of land cover on streamflow variability in a small Iowa watershed: assessing future vulnerabilities. American Journal of Environmental Sciences, 11(4), 186–198.CrossRefGoogle Scholar
  63. Schultz, R. C., Isenhart, T. M., Simpkins, W. W., & Colletti, J. P. (2004). Riparian forest buffers in agroecosystems–lessons learned from the Bear Creek watershed, central Iowa, USA. Agroforestry Systems, 61, 35–50.Google Scholar
  64. Schwob H.H. (1964) Water resources of the English River, Old Mans Creek, and Clear Creek basins in Iowa, No. 64–141. US Geological Survey.Google Scholar
  65. Tank, J. L., & Dodds, W. K. (2003). Nutrient limitation of epilithic and epixylic biofilms in ten North American streams. Freshwater Biology, 48(6), 1031–1049.CrossRefGoogle Scholar
  66. Thompson, R. (1992). Prairies, forests, and wetlands: The restoration of natural landscape communities in Iowa. Iowa City, IA: University of Iowa Press.Google Scholar
  67. Tiedje, J. M. (1988). Ecology of denitrification and dissimilatory nitrate reduction to ammonium. Biology of anaerobic. microorganisms, 717, 179–244.Google Scholar
  68. U.S. Geological Survey (2017) National Water Information System: Web Interface. Available via http://waterdata.usgs.gov/ia/nwis/uv/?site_no=05454220&PARAmeter_cd=00065,00060. Cited 10 May 2017.
  69. Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., Schlesinger, W. H., & Tilman, D. G. (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7(3), 737–750.Google Scholar
  70. Wade, A. J., Palmer-Felgate, E. J., Halliday, S. J., Skeffington, R. A., Loewenthal, M., Jarvie, H. P., Bowes, M. J., Greenway, G. M., Haswell, S. J., Bell, I. M., & Joly, E. (2012). Hydrochemical processes in lowland rivers: insights from in situ, high-resolution monitoring. Hydrology and Earth System Sciences, 16(11), 4323–4342.CrossRefGoogle Scholar
  71. Webster, J. R., & Patten, B. C. (1979). Effects of watershed perturbation on stream potassium and calcium dynamics. Ecological Monographs, 49(1), 51–72.CrossRefGoogle Scholar
  72. Webster, J. R., Mulholland, P. J., Tank, J. L., Valett, H. M., Dodds, W. K., Peterson, B. J., Bowden, W. B., Dahm, C. N., Findlay, S., Gregory, S. V., & Grimm, N. B. (2003). Factors affecting ammonium uptake in streams—an inter-biome perspective. Freshwater Biology, 48(8), 1329–1352.CrossRefGoogle Scholar
  73. Wetzel, R. G., & Likens, G. E. (2000). Limnological analysis (3rd ed.). New York: The University of Chicago Press.CrossRefGoogle Scholar
  74. Zhao, Y., & Quigg, A. (2014). Nutrient limitation in Northern Gulf of Mexico (NGOM): phytoplankton communities and photosynthesis respond to nutrient pulse. Plos One, 9(2), e88732.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Christopher S. Jones
    • 1
  • Sea-won Kim
    • 1
  • Thomas F. Wilton
    • 2
  • Keith E. Schilling
    • 3
  • Caroline A. Davis
    • 1
  1. 1.IIHR-Hydroscience and EngineeringUniversity of IowaIowa CityUSA
  2. 2.Iowa Department of Natural ResourcesDes MoinesUSA
  3. 3.Iowa Geological SurveyIowa CityUSA

Personalised recommendations