Advertisement

Characterization of biofilm formation by Salmonella enterica at the air-liquid interface in aquatic environments

  • José Andrés Medrano-Félix
  • Cristóbal Chaidez
  • Kristina D. Mena
  • María del Socorro Soto-Galindo
  • Nohelia Castro-del Campo
Article

Abstract

Survival of bacterial pathogens in different environments is due, in part, to their ability to form biofilms. Four wild-type Salmonella enterica strains, two Oranienburg and two Saintpaul isolated from river water and animal feces, were tested for biofilm formation at the air-liquid interface under stressful conditions (pH and salinity treatments such as pH 3, NaCl 4.5 w/v; pH 7, NaCl 4.5 w/v; pH 10, NaCl 4.5 w/v; pH 3, Nacl 0.5 w/v; pH 7, NaCl 0.5 w/v; and pH 10, NaCl 0.5 w/v); Salmonella Typhimurium DT104 was used as a control strain. Salmonella Oranienburg and Saintpaul from feces were moderately hydrophobic and motile, while S. Saintpaul from water and the control strain S. Typhimurium showed high hydrophobicity, which helped them form more resistant biofilms than S. Oranienburg. Under stressful conditions, all strains experienced difficulties in forming biofilms. Salmonella Saintpaul and Typhimurium expressed the red dry and rough (RDAR) morphotype and were able to form biofilm at air-liquid interface, contrarily to Oranienburg that showed incomplete rough morphology. This study contributes to the knowledge of biofilm formation as a survival strategy for Salmonella in aquatic environments.

Keywords

Wild type Salmonella strains Biofilm formation Air-liquid interface Morphotype Abiotic stress 

Notes

Acknowledgments

Authors thank Consejo Nacional de Ciencia y Tecnología (CONACyT) for its financial support through grant ID: 164601 of the Convocatoria de Investigación Científica Básica SEP-CONACyT 2010.

Authors also thank National Laboratory for Research in Food Safety of the Centro de Investigación en Alimentación y Desarrollo, Unidad Culiacán, and Bs. Célida Martínez Rodríguez for the technical support during this research.

References

  1. Ali, A., Morris, J. G., & Johnson, J. A. (2005). Sugars inhibit expression of the rugose phenotype of Vibrio cholerae. Journal of Clinical Microbiology, 43(3), 1426–1429.  https://doi.org/10.1128/JCM.43.3.1426-1429.2005.CrossRefGoogle Scholar
  2. Anriany, Y., Sahu, S. N., Wessels, K. N., Mc Cann, L. M., & Joseph, S. W. (2006). Alteration of the rugose phenotype in wag and ddhG mutants of Salmonella enterica serovar Typhimurium DT104 is associated with inverse production of curli and cellulose. Applied and Environmental Microbiology, 72(7), 5002–5012.  https://doi.org/10.1128/AEM.02868-05.CrossRefGoogle Scholar
  3. Austin, J. W., Sanders, G., Kay, W. W., & Collinson, S. K. (1998). Thin aggregative fimbriae enhance Salmonella Enteritidis biofilm formation. FEMS Microbiology Letters, 162, 295–301.  https://doi.org/10.1111/j.1574-6968.1998.tb13012.x.CrossRefGoogle Scholar
  4. Baudart, J., Lemarchand, K., Brisabois, A., & Lebaron, P. (2000). Diversity of Salmonella strains isolated from the aquatic environment as determined by serotyping and amplification of the ribosomal DNA spacer regions. Applied and Environmental Microbiology, 66(4), 1544–1552.  https://doi.org/10.1128/AEM.66.4.1544-1552.2000.CrossRefGoogle Scholar
  5. Bech, T. B., Johnsen, K., Dalsgaard, A., Laegdsmand, M., Jacobsen, O. H., & Jacobsen, C. S. (2010). Transport and distribution of Salmonella enterica serovar Typhimurium in loamy and sandy soil monoliths with applied liquid manure. Applied and Environmental Microbiology, 76(3), 710–714.  https://doi.org/10.1128/AEM.00615-09.CrossRefGoogle Scholar
  6. Branda, S. S., Vilk, S., Friedman, L., & Kolter, R. (2005). Biofilms: The matrix revisited. Trends in Microbiology, 13(1), 20–26.  https://doi.org/10.1016/j.tim.2004.11.006.CrossRefGoogle Scholar
  7. Bulmer, D. M., Kharraz, L., Grant, A. J., Dean, P., Morgan, F., Karavolos, M. H., Doble, A. C., McGhie, E. J., Koronakis, V., Daniel, R. A., Mastroeni, P., & Anjam-Khan, C. M. (2012). The bacterial cytoskeleton modulates motility, type 3 secretion, and colonization in Salmonella. PLoS Pathogens, 8(1), e1002500.  https://doi.org/10.1371/journal.ppat.1002500.CrossRefGoogle Scholar
  8. Castelijin, G. A. A., van der Veen, S., Zwietering, M. H., Moezelaar, R., & Abee, T. (2012). Diversity in biofilm formation and production of curlifimbriae and cellulose of Salmonella typhimurium strains of different origin in high and low nutrient medium. Biofouling, 28(1), 51–63.  https://doi.org/10.1080/08927014.2011.648927.CrossRefGoogle Scholar
  9. Chia, T. W. R., McMeeing, T. A., Fegan, N., & Dykes, G. A. (2011). Significance of the rdar and bdar morphotypes in the hydrophobicity and attachment to abiotic surfaces of Salmonella Sofia and other poultry-associated Salmonella serovars. Letters in Applied Microbiology, 53, 581–584.  https://doi.org/10.1111/j.1472-765X.2011.03147.x.CrossRefGoogle Scholar
  10. Constantin, O. E. (2009). Bacterial biofilm formation at air liquid interfaces. Innov Rom Food Biotechnol, 5, 18–22.Google Scholar
  11. Costerton, J. W. (1999). Introduction to biofilm. International Journal of Antimicrobial Agents, 11, 217–221.CrossRefGoogle Scholar
  12. Costerton, J. W., Cheng, K. J., Gessey, G. G., Ladd, T. I., Nickel, J. C., Bagupta, M., & Marrie, T. J. (1987). Bacterial biofilms in nature and disease. Ann Rev Microbiol., 41, 435–464.  https://doi.org/10.1146/annurev.mi.41.100187.002251.CrossRefGoogle Scholar
  13. Di Bonaventura, G., Piccolomini, R., Paludi, D., D'Orio, V., Vergara, A., Conter, M., & Ianieri, A. (2008). Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: Relationship with motility and cell surface hydrophobicity. Journal of Applied Microbiology, 104(6), 1552–1561.  https://doi.org/10.1111/j.1365-2672.2007.03688.x.CrossRefGoogle Scholar
  14. Donlan, R. (2002). Biofilms: Microbial life on surfaces. Emmerg Infect Dis, 8(9), 881–890.CrossRefGoogle Scholar
  15. Donlan, R., Piede, J., Heyes, C., Sanii, L., Murga, R., Edmonds, P., El-Sayed, I., & El-Sayed, M. (2004). Model system for growing and quantifiying Streptococcus pneumoniae biofilms in situ and in real time. Applied and Environmental Microbiology, 70(8), 4980–4988.  https://doi.org/10.1128/AEM.70.8.4980-4988.2004.CrossRefGoogle Scholar
  16. Estrada-Acosta, M., Jiménez, M., Chaidez, C., León-Félix, J., & Castro-del Campo, N. (2014). Irrigation water quality and the benefits of implementing good agricultural practices during tomato (Lycopersicum esculentum) production. Environmental Monitoring and Assessment, 186(7), 4323–4330.  https://doi.org/10.1007/s10661-014-3701-1.CrossRefGoogle Scholar
  17. Garcia, R., Baelum, J., Fredslund, L., Santorum, P., & Jacobsen, C. (2010). Influence of temperature and predation on survival of Salmonella enterica serovar Typhimurium and expression of invA in soil and manure-amended soil. Applied and Environmental Microbiology, 76(15), 5025–5031.  https://doi.org/10.1128/AEM.00628-10.CrossRefGoogle Scholar
  18. Garret, T. R., Bhakoo, M., & Zhang, Z. (2008). Bacterial adhesion and biofilms on surfaces. Prog Nat Sci, 18, 1049–1056.  https://doi.org/10.1016/j.pnsc.2008.04.001.CrossRefGoogle Scholar
  19. Haley, B., Cole, D. J., & Lipp, E. K. (2009). Distribution, diversity and seasonality of waterborne Salmonellae in a rural watershed. Applied and Environmental Microbiology, 75(5), 1248–1255.  https://doi.org/10.1128/AEM.01648-08.CrossRefGoogle Scholar
  20. Jiménez, M., & Chaidez, C. (2012). Improving Salmonella determination in Sinaloa rivers with ultrafiltration and most probable number methods. Environmental Monitoring and Assessment, 184, 4271–4277.  https://doi.org/10.1007/s10661-011-2262-9.CrossRefGoogle Scholar
  21. Jiménez, M., Martinez-Urtaza, J., & Chaidez, C. (2011). Geographical and temporal dissemination of Salmonellae isolated from domestic animal hosts in the Culiacan valley, Mexico. Microbial Ecology, 61, 81–820.  https://doi.org/10.1007/s00248-010-9792-5.CrossRefGoogle Scholar
  22. Jiménez, M., Martinez-Urtaza, J., Rodriguez-Alvarez, M., Leon-Felix, J., & Chaidez, C. (2014). Prevalence and genetic diversity of Salmonella spp. in a river in a tropical environment in Mexico. Journal of Water and Health, 12(4), 874–884.  https://doi.org/10.2166/wh.2014.051.CrossRefGoogle Scholar
  23. Koza, A., Hallett, P. D., Moon, C. D., & Spiers, A. J. (2009). Characterization of a novel air–liquid interface biofilm of Pseudomonas fluorescens SBW25. Microbiol, 155(5), 1397–1406.  https://doi.org/10.1099/mic.0.025064-0.CrossRefGoogle Scholar
  24. Lianou, A., & Koutsoumanis, K. P. (2012). Strain variability of the biofilm-forming ability of Salmonella enterica under various environmental conditions. International Journal of Food Microbiology, 160(2), 171–178.  https://doi.org/10.1016/j.ijfoodmicro.2012.10.002.CrossRefGoogle Scholar
  25. López-Cuevas, O., León-Félix, J., Jiménez-Edeza, M., & Chaidez-Quiroz, C. (2009). Detection and antibiotic resistance of Escherichia coli and Salmonella in water and agricultural soil. Revista Fitotecnia Mexicana, 32(2), 119–126.Google Scholar
  26. Malcova, M., Hradecka, H., Karpiskova, R., & Rychlik, I. (2008). Biofilm formation in field strains of Salmonella enterica serovar Typhimurium: Identification of a new colony morphology type and the role of SGI1 in biofilm formation. Veterinary Microbiology, 129(3–4), 360–366.  https://doi.org/10.1016/j.vetmic.2007.12.006.CrossRefGoogle Scholar
  27. Miszka, K., & Czaczyk, K. (2011). Bacterial biofilms on food contact surfaces. Pol J Food Nutr Sci, 61(3), 173–180.  https://doi.org/10.2478/v10222-011-0018-4.Google Scholar
  28. Moore, B. C., Martinez, E., Gay, J. M., & Rice, D. H. (2003). Survival of Salmonella enterica in freshwater and sediments and transmission by the aquatic midge Chironomus tentans (Chironomidae: Diptera). Applied and Environmental Microbiology, 69(8), 4556–4560.  https://doi.org/10.1128/AEM.69.8.4556-4560.2003.CrossRefGoogle Scholar
  29. Ngwai, Y. B., Adachi, Y., Ogawa, Y., & Hara, H. (2006). Characterization of biofilm forming abilities of antibiotic resistant Salmonella Typhimurium DT104 on hydrophobic abiotic surfaces. Journal of Microbiology, Immunology, and Infection, 39(4), 278–291.Google Scholar
  30. O’tool, G. A., & Kolter, R. (1998). Initiation of biofilm formation in Pseudomonas fluorescens WC365 proceeds via multiple, convergent signalling pathways: A genetic analysis. Molecular Microbiology, 28, 449–461.  https://doi.org/10.1046/j.1365-2958.1998.00797.x.CrossRefGoogle Scholar
  31. Palmer, J., Flint, S., & Brooks, J. (2007). Bacterial cell attachment, the beginning of a biofilm. Journal of Industrial Microbiology & Biotechnology, 34, 577–588.  https://doi.org/10.1007/s10295-007-0234-4.CrossRefGoogle Scholar
  32. Römling, U., Bokranz, W., Rabsch, W., Zogaj, X., Nimtz, M., & Tschäpe, H. (2003). Occurrence and regulation of the multicelular morphotype in Salmonella serovars important in human disease. International Journal of Medical Microbiology, 293(4), 273–285.CrossRefGoogle Scholar
  33. Schäfer, A., Harms, H., & Zehnder, A. J. B. (1998). Bacterial accumulation at the air-water interface. Environ Sci Technol, 32, 3704–3712.  https://doi.org/10.1021/es980191u.CrossRefGoogle Scholar
  34. Setti, I., Rodriguez-Castro, A., Pata, M. P., Cadarso-Suarez, C., Yacoubi, B., Bensmael, L., Moukrim, A., & Martinez-Urtaza, J. (2009). Characteristics and dynamics of Salmonella contamination along the coast of Agadir, Morocco. Applied and Environmental Microbiology, 75(24), 7700–7709.  https://doi.org/10.1128/AEM.01852-09.CrossRefGoogle Scholar
  35. Simental, L., & Martínez-Urtaza, J. (2008). Climate patterns governing the presence and permanence of Salmonellae in coastal areas of Bahia de todos Santos, México. Applied and Environmental Microbiology, 74(19), 5918–5924.  https://doi.org/10.1128/AEM.01139-08.CrossRefGoogle Scholar
  36. Spector, M., & Kenyon, W. (2012). Resistance and survival strategies of Salmonella enterica to environmental stresses. Food Res Int, 45, 455–481.  https://doi.org/10.1016/j.foodres.2011.06.056.CrossRefGoogle Scholar
  37. Steenackers, H., Hermans, K., Vanderleyden, J., & De Keersmaecker, S. C. J. (2012). Salmonella biofilms: An overview on occurrence structure, regulation and eradication. Food Research International, 45, 502–531.  https://doi.org/10.1016/j.foodres.2011.01.038.CrossRefGoogle Scholar
  38. Sugumar, G., & Mariappan, S. (2003). Survival of Salmonella sp. in freshwater and seawater microcosms under starvation. Asian Fisheries Science, 16, 247–255.Google Scholar
  39. Toguchi, A., Siano, M., Burkart, M., & Harshey, R. M. (2000). Genetics of swarming motility in Salmonella enterica serovar Typhimurium: Critical role for lipopoliysaccharide. Journal of Bacteriology, 182, 6308–6321.  https://doi.org/10.1128/JB.182.22.6308-6321.2000.CrossRefGoogle Scholar
  40. Vidal-De Oliveira, D. C., Fernandes, A., Kaneno, R., Guimaraes-Silva, M., Araújo, J. P., Cirone-Silva, N. C., & Mores-Rall, V. M. (2014). Ability of Salmonella spp. to produce biofilm is dependent on temperature and surface material. Foodborne Pathogens and Disease, 11(6), 478–483.  https://doi.org/10.1089/fpd.2013.1710.CrossRefGoogle Scholar
  41. Weiss-Muszkat, M., Shakh, D., Zhou, Y., Pinto, R., Belausov, E., Chapman, M. R., & Sela, S. (2010). Biofilm formation by and multicellular behavior of Escherichia coli O55:H7, an atypical enteropathogenic strain. Applied and Environmental Microbiology, 76(5), 1545–1554.  https://doi.org/10.1128/AEM.01395-09.CrossRefGoogle Scholar
  42. White, A. P., Gibson, D. L., Kim, W., Kay, W. W., & Surette, M. G. (2006). Thin aggregative fimbriae and cellulose enhance long-term survival and persistence of Salmonella. Journal of Bacteriology, 188(9), 3219–3227.  https://doi.org/10.1128/JB.188.9.3219-3227.2006.CrossRefGoogle Scholar
  43. Yamamoto, K., Arai-Hiroyukim, A., Ishi, M., & Igarashi, Y. (2011). Trade of between oxygen and iron acquisition in bacterial cells at the air-liquid interface. FEMS Microbiology Ecology, 77, 83–94.  https://doi.org/10.1111/j.1574-6941.2011.01087.x.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • José Andrés Medrano-Félix
    • 1
  • Cristóbal Chaidez
    • 2
  • Kristina D. Mena
    • 3
  • María del Socorro Soto-Galindo
    • 2
  • Nohelia Castro-del Campo
    • 2
  1. 1.CONACYT-Centro de Investigación en Alimentación y Desarrollo A.C., Coordinación Regional CuliacánLaboratorio Nacional para la Investigación en Inocuidad AlimentariaCuliacánMexico
  2. 2.Centro de Investigación en Alimentación y Desarrollo A.C., Coordinación Regional CuliacánLaboratorio Nacional para la Investigación en Inocuidad AlimentariaCuliacánMexico
  3. 3.Health Science Center at HoustonThe University of TexasHoustonUSA

Personalised recommendations