Advertisement

Bioacumulation of trace elements in the crab Ucides cordatus (Linnaeus, 1763) from the macrotidal mangrove coast region of the Brazilian Amazon

  • Bruna Mariáh da S. e Silva
  • Gundisalvo P. Morales
  • Ana Lúcia N. Gutjahr
  • Kelson do C. Freitas Faial
  • Bruno S. Carneiro
Article

Abstract

In this study, trace element concentrations were measured in chelipod and gill samples of the crab U. cordatus by induced coupled plasma optical emission spectrometry (ICP OES). The element average concentrations between the structures were statistically compared. Gill concentrations of Cu and Zn were higher in female crabs, while in chelipods, Pb concentrations were higher in males. The concentration of Zn in crabs from Curuçá City were higher than the recommended by health agencies, but the provisional tolerable daily intake value (PTDI), for Zn and Cu, showed only 10 and 23% contribution, respectively. The bioaccumulation factor was higher than 1 for Cu (gills and chelipods) and Zn (only for chelipods), which suggests bioaccumulation for these elements. Further metallomic and oxidative stress analyses are suggested, in order to evaluate possible protein and/or enzymatic biomarkers of toxicity.

Keywords

Environmental contamination Uca crab Estuary Environmental impact Human health 

Notes

Acknowledgments

The authors would like to thank the Evandro Chagas Institute (IEC) and the Dr. Edilson Brabo Ecotoxicology Laboratory by the collaboration in carrying out the analyses. Thanks are also due to the Coordination of Improvement of Higher Education Personnel (CAPES) for financial assistance.

References

  1. Adams, D. H., & Engel, M. E. (2014). Mercury, lead, and cadmium in blue crabs, Callinectes sapidus, from the Atlantic coast of Florida, USA: a multipredator approach. Ecotoxicology and Environmental Safety, 102, 196–201.  https://doi.org/10.1016/j.ecoenv.2013.11.029.CrossRefGoogle Scholar
  2. Al-Mohanna, S. Y., & Subrahmanyam, M. N. V. (2001). Flux of heavy metal accumulation in various organs of the intertidal marine blue crab, Portunus pelagicus (L.) from the Kuwait coast after the Gulf War. Environment International.  https://doi.org/10.1016/S0160-4120(01)00063-0.
  3. Amouroux, J. M., & Tavares, M. (2005). Natural recovery of Amazonian mangrove forest as revealed by Brachyuran crab fauna: preliminary description. Vie et Milieu-Life and Environment, 55(2), 71–79.Google Scholar
  4. Andrade, S. F., Matos, T. B., & Carvalho, C. E. V. (2011). Variação Sazonal de Metais Pesados em Siris Callinectes ornatus (Ordway, 1863) da Lagoa de Iquiparí, Brasil. Revista Virtual de Química.  https://doi.org/10.5935/1984-6835.20110017.
  5. Arnot, J. A., & Gobas, A. P. C. (2006). A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environmental Reviews, 14, 257–297.  https://doi.org/10.1139/a06-005.CrossRefGoogle Scholar
  6. Bacon, J. R., & Davidson, C. M. (2008). Is there a future for sequential chemical extraction? Analyst.  https://doi.org/10.1039/B711896A.
  7. Banci, K. R. S., Mori, G. M., Oliveira, M. A., Paganelli, F. L., Pereira, M. R., & Pinheiro, M. A. A. (2017). Can environmental pollution by metals change genetic diversity? Ucides cordatus (Linnaeus, 1763) as a study case in Southeastern Brazilian mangroves. Marine Pollution Bulletin.  https://doi.org/10.1016/j.marpolbul.2017.01.039.
  8. Barbieri, E. (2009). Effects of zinc and cadmium on oxygen consumption and ammonium excretion in pink shrimp (Farfantepenaeus paulensis, Pérez-Farfante, 1967, Crustacea). Ecotoxicology.  https://doi.org/10.1007/s10646-008-0285-y.
  9. Berrêdo, J. F., Costa, M. L., Vilhena, M. P. S. P., et al. (2008). Mineralogia e geoquímica de sedimentos de manguezais da costa amazônica: o exemplo do estuário do rio Marapanim (Pará). Revista Brasileira de Geociencias, 38(1), 24–35.CrossRefGoogle Scholar
  10. Barrento, S., Marques, A., Teixeira, B., Anacleto, P., Carvalho, M. L., Vaz-Pires, P., & Nunes, M. L. (2009). Macro and trace elements in two populations of brown crab Cancer pagurus: ecological and human health implications. Journal of Food Composition and Analysis, 22(1), 65–71.CrossRefGoogle Scholar
  11. Bettinelli, M., Beone, G. M., Spezia, S., & Baffi, C. (2000). Determination of heavy metals in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spectrometry analysis. Analytica Chimica Acta, 424, 289–296.  https://doi.org/10.1016/S0003-2670(00)01123-5.CrossRefGoogle Scholar
  12. Boitel, F., & Truchot, J. P. (1989). Effects of sublethal and lethal copper levels on hemolymph acid-base balance and ion concentrations in the shore crab Carcinus maenas kept in undiluted sea water. Marine Biology, 103, 495–501.  https://doi.org/10.1007/BF00399581.CrossRefGoogle Scholar
  13. BRASIL, Portaria n°. 685/98. Aprova o Regulamento Técnico: “Princípios Gerais para o Estabelecimento de Níveis Máximos de Contaminantes Químicos em Alimentos” e seu Anexo: “Limites máximos de tolerância para contaminantes inorgânicos” complementa e faz algumas modificações no Decreto Lei n° 55.871, de 26 de março de 1965. Disponível em: < http://e-legis.bvs.br/> Accessed in 2013, january.
  14. BRASIL. Decreto s/n de 13 de dezembro de 2002. Cria a Reserva Extrativista Mãe Grande de Curuçá, no Município de Curuçá, no Estado do Pará. Diário Oficial [da] Republica Federativa do Brasil, Brasília, DF, 13 dez. 2002.Google Scholar
  15. Bryan, G. W. (1967). Zinc concentrations of fast and slow contracting muscles in the lobster. Nature, 213, 1043–1044.  https://doi.org/10.1038/2131043a0.CrossRefGoogle Scholar
  16. Burattini, SV, & Brandelli, A. (2006). Bioacumulação. In PA Zagatto, & E Bertoletti. Ecotoxicologia aquática, princípios e aplicações. São Carlos: Rima.Google Scholar
  17. Carvalho, E. V., & Lacerda, L. D. (1992). Heavy metals in the Guanabara Bay biota: why such low concentrations? Ciência e Cultura, 44(2/3), 184–186.Google Scholar
  18. Castro, A. C. L., Correia, M. M. F., Nascimento, A. R., et al. (2008). Aspectos bioecológicos do caranguejo-uçá (Ucides cordatus cordatus, l.1763) (Decapoda, Brachyura) nos manguezais da ilha de São Luís e litoral oriental do estado do Maranhão, Brasil. Amazônia: Ci. & Desenv, 3(6), 17–36.Google Scholar
  19. Chiba, W. A. C., Passerini, M. D., & Tundisi, J. G. (2011). Metal contamination in benthic macroinvertebrates in a sub-basin in the southeast of Brazil. Brazilian Journal of Biology.  https://doi.org/10.1590/S1519-69842011000300008.
  20. Çoğun, H. Y., Firat, O., Aytekin, T., Firidin, G., Firat, Ö., Varkal, H., Temiz, Ö., & Kargin, F. (2017). Heavy metals in the blue crab (Callinectes sapidus) in Mersin Bay, Turkey. Bulletin of Environmental Contamination and Toxicology., 98, 824–829.  https://doi.org/10.1007/s00128-017-2086-613.CrossRefGoogle Scholar
  21. Conde, J. E., Tognella, M. M. P., Paes, E. T., et al. (2000). Population and life history features of the crab Aratus pisonii (Decapoda: Grapsidae) in a subtropical estuary. Interciencia, 25(3), 151–158.Google Scholar
  22. Cordovil, M. C. O., Mendonça, A. G. R., Botero, W. G., Santos, A., Rocha, J. C., Mello, K., Toppa, R. H., & Oliveira, L. C. (2014). Spatial and chemometric analysis of the distribution of metal species in flooded and nonflooded soils from the middle negro river basin, amazon. Química Nova.  https://doi.org/10.5935/0100-4042.20140124.
  23. Davies, O. A., Allison, M. E., & Uyi, H. S. (2006). Bioaccumulation of heavy metals in water, sediment and periwinkle (Tympanotonus fuscatus var radula) from the Elechi Creek, Niger Delta. African Journal of Biotechnology, 5(10), 968–973.Google Scholar
  24. Duarte, L. F. A., Souza, C. A., Nobre, C. R., Pereira, C. D. S., & Pinheiro, M. A. A. (2016). Multi-level biologicalresponsesin Ucides cordatus (Linnaeus, 1763) (Brachyura, Ucididae) as indicators of conservation status in mangrove áreas from the western atlantic. Ecotoxicology and Environmental Safety.  https://doi.org/10.1016/j.ecoenv.2016.07.018.
  25. Duarte, L. F. A., Souza, C. A., Pereira, C. D. S., & Pinheiro, M. A. A. (2017). Metal toxicity assessment by sentinel species of mangroves: in situ case study integrating chemical and biomarkers analyses. Ecotoxicology and Environmental Safety.  https://doi.org/10.1016/j.ecoenv.2017.07.051.
  26. Eisler, R. (1981). Trace metal concentrations in marine organisms. New York: Pergamon Press.Google Scholar
  27. Enviroment Canada Canadian Sediment Quality Guidelines for the Protection of Aquatic Life Summary Tables, 1999. Available in: <http://www.ec.gc.ca>.
  28. EPA. Environmental Protection Agency. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories. Vol. I. Fish Sampling and Analysis. EPA 823-R-93-002, U.S. Washington, D.C., 1993 In: HEINEN, J. M. Water Quality Criteria, Uptake, Bioaccumulation, and Public Health Considerations for Chemicals of Possible Concern in West Virginia Mine Waters Used for Culture of Rainbow Trout. 1995.: E. M. WADE, M. R. JENKINS (Eds), March 1996.Google Scholar
  29. Evaluation of certain food additives and contaminants for cadmium and methylmercury. Fifty fifty report of the Joint FAO/WHO Expert Committee on Food Additives, Technical Report Series 901. Geneva, Switzerland. 2000.Google Scholar
  30. Falusi, B. A., & Olanipekun, E. O. (2007). Bioconcentration factors of heavy metals in tropical crab (carcinus sp) from River Aponwe, Ado-Ekiti, Nigeria. Journal of Applied Sciences & Environmental Management, 11(4), 51–54.Google Scholar
  31. FAO/WHO—food and agriculture organization/world health organization. Food consumption and exposure assessment of chemicals. Report of a FAO/WHO consultation, 10–14 February. Geneva, Switzerland.1997.Google Scholar
  32. Föstner, U. G., & Wittmann, G. T. W. (1981). Metal pollution in the aquatic environmental. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  33. Guest, M. A., Connolly, R. M., Lee, S. Y., Loneragan, N. R., & Breitfuss, M. J. O. (2006). Mechanism for the small-scale movement of carbon among estuarine habitats: organic matter transfer not crab movement. Oecologia, 148, 88–96.  https://doi.org/10.1007/s00442-005-0352-5.CrossRefGoogle Scholar
  34. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories. Vol. II. Risk Assessment and Fish Consumption Limits. EPA 823-B-4-004, U.S. Washington, D. C., 1994. In: HEINEN, J. M. Water Quality Criteria, Uptake, Bioaccumulation, and Public Health Considerations for Chemicals of Possible Concern in West Virginia Mine Waters Used for Culture of Rainbow Trout.Google Scholar
  35. Harris, DC (2008). Análise química quantitativa. Rio de Janeiro: LTC.Google Scholar
  36. Health criteria and other supporting information, v. 2, p. 2 – Chemical and physical aspects. Geneva, Switzerland. 1996. Available in: <http://www.who.int/water_sanitation_health/dwq/2edvol2p2a.pdf>
  37. Hosseini, M., Navabi, S. M. B., Parsa, Y., & Saadatmand, M. (2016). Mercury contamination in some marine biota species from Khuzestan shore, Persian Gulf. Toxicology and Industrial Health.  https://doi.org/10.1177/0748233714555392.
  38. Hosseini, S. V., Sobhanardakani, S., Miandare, H. K., Harsij, M., & Regenstein, J. M. (2015). Determination of toxic (Pb, Cd) and essential (Zn, Mn) metals in canned tuna fish produced in Iran. Environmental Health Science & Engineering, 13, 59.  https://doi.org/10.1186/s40201-015-0215-x.CrossRefGoogle Scholar
  39. IBAMA, Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Estatística da Pesca 2005 Brasil: grandes regiões e unidades da Federação. Edição IBAMA. 113 p. Brasília, 2007.Google Scholar
  40. Jesus, H.C.; Fernandes, L.F.L; Zandonade, E.; Anjos Jr., E.E.; Gonçalves, R.F.; Marques, F.C.; Reis, L.A.; Romano, C.T.; Teixeira, R.D.; Santos Sad, C.M. (2003) Avaliação da contaminação por metais pesados em caranguejos e sedimentos de áreas de manguezal do sistema estuarino de Vitória - ES. Relatório Técnico - Projeto Facitec/PMV-ES, contrato no 4985717/2001, 40 p.Google Scholar
  41. Jop, K. M., Biever, R. C., Horberg, J. R., & Shepherd, S. P. (1997). Analysis of metals in blue crabs, Callinectes sapidus, from two Connecticut estuaries. Bulletin of Environmental Contamination and Toxicology, 58, 311–317.  https://doi.org/10.1007/s001289900336.CrossRefGoogle Scholar
  42. Kabata-Pendias, A. (2011). Trace elements in soils and plants. New York: CRC Press.Google Scholar
  43. Kaya, G., & Turkoglu, S. (2017). Bioaccumulation of heavy metals in various tissues of some fish species and green tiger shrimp (Penaeus semisulcatus) from İskenderun bay, Turkey, and risk assessment for human health. Biological Trace Element Research, 180, 314–326.  https://doi.org/10.1007/s12011-017-0996-0.CrossRefGoogle Scholar
  44. Klavins, M., Briede, A., Parele, A., Rodinov, V., & Klavina, I. (1998). Metal accumulation in sediments and benthic invertebrates in lakes of Latvia. Chem, 36, 3043–3053.  https://doi.org/10.1016/S0045-6535(98)00010-1.Google Scholar
  45. Koosej, N., Jafariyan, H., Rahmani, A., Patimar, A., & Gholipoor, H. (2017). Measure and compare some heavy metals in muscle tissue of blue swimming crab Portunus pelagicus in some areas of the Southern Persian Gulf. Agricultural Research & Technology.  https://doi.org/10.19080/ARTOAJ.2017.07.555708.
  46. Litheraty, P., Nasser-Ali, L., Zarba, M. A., & Ali, M. A. (1987). The role and problems of monitoring bottom sediment for pollution assessment in the coastal marine environment. Water Science and Technology, 19(5–6), 781–792.Google Scholar
  47. Lopes, R. B. (2012) Metais pesados no caranguejo Ucides cordatus Linnaeus, 1763 e ecotoxicologia de sedimentos do estuário dos Rios Jundiaí e Potengi-RN. Dissertação de mestrado, Universidade Federal do Rio Grande do Norte, Brasil.Google Scholar
  48. Macfarlane, G. R., Booth, D. J., & Brown, K. R. (2000). The Semaphore crab, Heloecius cordiformis: bio-indication potential for heavy metals in estuarine systems. Aquatic Toxicology, 50, 153–166.  https://doi.org/10.1016/S0166-445X(00)00083-7.CrossRefGoogle Scholar
  49. Mallns, D. C., McCain, B. B., Brown, D. W., Chan, S. L., Myers, M. S., Landahl, J. T., Prohaska, P. G., Friedman, A. J., Rhodes, L. D., Burrows, D. O., Groniund, W. D., & Hodglns, H. O. (1984). Chemical pollutants in sediments and diseases of bottom-dwelling fish in Puget Sound, Washington. Environmental Science & Technology, 18, 705–713.  https://doi.org/10.1021/es00127a013.CrossRefGoogle Scholar
  50. Mantel, L. H., & Bliss, D. E. (1983). The biology of Crustacea: internal anatomy and physiological regulation. New York: Academic Press.Google Scholar
  51. Marengoni, N. G., Klosowski, E. S., Oliveira, K. P., et al. (2013). Bioacumulação de metais pesados e nutrientes no mexilhão dourado do reservatório da usina hidrelétrica de. Itaipu binacional Química Nova, 36(3), 359–363.CrossRefGoogle Scholar
  52. Marques, A., Teixeira, B., Barrento, S., Anacleto, P., Carvalho, M. L., & Nunes, M. L. (2010). Chemical composition of Atlantic spider crab Maja brachydactyla: human health implications. J. Food Composition and Analysis, 23, 230–237.  https://doi.org/10.1016/j.jfca.2009.10.007.CrossRefGoogle Scholar
  53. Martins, C. M. G., Barcarolli, I. F., Menezes, E. J., Giacomin, M. M., Wood, C. M., & Bianchini, A. (2011). Acute toxicity, accumulation and tissue distribution of copper in the blue crab Callinectes sapidus acclimated to different salinities: in vivo and in vitro studies. Aquatic Toxicology, 101, 88–99.  https://doi.org/10.1016/j.aquatox.2010.09.005.CrossRefGoogle Scholar
  54. Melo, G. A. S. (1996). Manual de identificação dos Brachyura (caranguejos e siris) do litoral brasileiro. São Paulo: Editora Plêiade.Google Scholar
  55. Merfa, T. C. (2010). Dissertação de mestrado. Determinação de Metais Pesados no caranguejo Comestível Ucides cordatus (crustacea: Decapoda). Brasil: Universidade Estadual Paulista “Júlio de Mesquita Filho”.Google Scholar
  56. Negri, A., Katheryn, B., Boyle, S., Brinkman, D., & Webster, N. (2006). Contamination in sediments, bivalves and sponges of McMurdo sound, Antarctica. Environmental Pollution, 143, 456–467.  https://doi.org/10.1016/j.envpol.2005.12.005.CrossRefGoogle Scholar
  57. Nordhaus, I., Wolff, M., & Diele, K. (2006). Litter processing and population food intake of the mangrove crab Ucides cordatus in a high intertidal forest in northern Brazil. Estuarine, Coastal and Shelf Science, 67, 239–250.  https://doi.org/10.1016/j.ecss.2005.11.022.CrossRefGoogle Scholar
  58. Ortega, P., Vitorino, H. A., Moreira, R. G., Pinheiro, M. A. A., Almeida, A. A., Custódio, M. R., & Zanotto, F. P. (2016). Physiological differences in the crab Ucides cordatus from two populations inhabiting mangroves with different levels of cadmium contamination. Environmental Toxicology and Chemistry, 36, 361–371.  https://doi.org/10.1002/etc.3537.CrossRefGoogle Scholar
  59. Pantoja, C. S., Teles, G. C., & Pimentel, M. A. S. (2012). O Estudo da Paisagem na Reserva Extrativista Marinha Mãe Grande de Curuça-PA. Revista Geonorte, 3(4), 1105–1116.Google Scholar
  60. Phillips, D. J. H. (1977). The use of biological indicator organisms to monitor trace metal pollution in marine and estuarine environments—a review. Environmental Pollution, 13, 281–317.  https://doi.org/10.1016/0013-9327(77)90047-7.CrossRefGoogle Scholar
  61. Phillips, D. J. H., & Rainbow, P. S. (1993). Biomonitoring of trace aquatic contaminants. London: Chapman & Hall.CrossRefGoogle Scholar
  62. Pinheiro, M. A. A., Silva, P. P. G., Duarte, L. F. A., Almeida, A. A., & Zanotto, F. P. (2012). Accumulation of six metals in the mangrove crab Ucides cordatus (Crustacea: Ucididae) and its food source, the red mangrove Rhizophora mangle (Angiosperma: Rhizophoraceae). Ecotoxicology and Environmental Safety, 81, 114–121.  https://doi.org/10.1016/j.ecoenv.2012.05.004.CrossRefGoogle Scholar
  63. Pinheiro, M. A. A., & Fiscarelli, A. G. (2001). Manual de apoio à fiscalização do caranguejo-uçá (Ucides cordatus). Itajaí, Santa Catarina: Centro de Pesquisa e Gestão de Recursos Pesqueiros do Litoral Sudeste e Sul - CEPSUL.Google Scholar
  64. Pinheiro, M. A. A., Oliveira, A. J. F. C., & Fontes, R. F. C. (2008). Introdução ao Panorama Ambiental da Baixada Santista. São Vicente: Universidade Estadual Paulista, Campus Experimental do Litoral Paulista.Google Scholar
  65. Rainbow, P. S. (1988). The significance of trace metal concentrations in decapods. In A. A. Fincham (Ed.), Aspects of decapod crustacean biology (pp. 291–313). Oxford: Clarendon Press.Google Scholar
  66. Rainbow, P. S. (1997). Ecophysiology of trace metal uptake in crustaceans. Estuarine, Coastal and Shelf Science, 44, 169–176.  https://doi.org/10.1006/ecss.1996.0208.CrossRefGoogle Scholar
  67. Ramos, M. A. V. (2012) Avaliação Preliminar dos teores de metais traço em peixes e crustáceos provenientes da porção norte da baía de todos os santos, Bahia, Brasil. Dissertação de mestrado, Universidade Federal do Recôncavo da Bahia, Brasil.Google Scholar
  68. Ribeiro, R. F., Vollaire, Y., Sanches-Chardi, A., & Roche, H. (2005). Bioaccumulation and the effects of organochlorine pesticides, PAH and heavy metals in the eel (Anguilla anguilla) at the Camargue Nature Reserve, France. Aquatic Toxicology, 74, 53–69.  https://doi.org/10.1016/j.aquatox.2005.04.008.CrossRefGoogle Scholar
  69. Silva, G. S., Nascimento, A. S., Sousa, E. R., Marques, E. P., Marques, A. L. B., Corrêa, L. B., & Silva, G. S. (2014). Distribution and fractionation of metals in mangrove sediment from the Tibiri River estuary on Maranhão Island. Revista Virtual de Química.  https://doi.org/10.5935/1984-6835.20140023.
  70. Snyder, L. R., Kirkland, J. J., & Glajch, J. L. (1997). Practical HPLC method development. New York: Wiley.CrossRefGoogle Scholar
  71. Souza Filho, P. W. M. (2005). Costa de manguezais de macromarés da Amazônia: cenários morfológicos, mapeamento e quantificação de áreas usando dados de sensores remotos. Revista Brasileira de Geofíısica, 23, 427–435.  https://doi.org/10.1590/S0102-261X2005000400006.CrossRefGoogle Scholar
  72. Souza, C. B. G. (2010). A gestão dos recursos naturais na Amazônia: a reserva extrativista Mãe Grande de Curuçá-PA. Geografar.  https://doi.org/10.18542/rmi.v7i8.2761.
  73. Spalding, M., Kainuma, M., & Collins, L. (2010). World atlas of mangrove. London: Earthscan Publications.Google Scholar
  74. Urbano, M. A. A., Moura, M. F. V., & Carvalho, G. B. (2010). Determinação de metais classificados como de importância toxicológica no molusco bivalve Anadara notabilis (Röding, 1798) encontrado em Galinhos, Rio Grande do Norte, Brasil. Acta Toxicologica Argentina, 18(2), 54–58.Google Scholar
  75. Vinas, P., Pardo-Martinez, M., & Hernandez-Cordoba, M. (2000). Determination of copper, cobalt, nickel, and manganese in baby food slurries using electrothermal atomic absorption spectrometry. Journaul of Agriculture an food chemistry, 48, 5789–5794.  https://doi.org/10.1021/jf000479e.CrossRefGoogle Scholar
  76. Virga, R. H. P., & Geraldo, L. P. (2008). Heavy metals content investigation in blue crab species of the genus Callinectes sp. Aliment: Ciênc. Tecnol.  https://doi.org/10.1590/S0101-20612008000400028.Google Scholar
  77. Virga, R. H. P., Geraldo, L. P., & Santos, F. H. (2007). Avaliação de contaminação por metais pesados em amostras de siris azuis. Ciência e Tecnologia de Alimentos, 27(4), 779–785.CrossRefGoogle Scholar
  78. Wu, J. P., & Chen, H. C. (2005). Effects of cadmium and zinc on the growth, food consumption, and nutritional conditions of the white shrimp, Litopenaeus vannamei (Boone). Bulletin Environmental Contamination Toxicology, 74, 234–241.  https://doi.org/10.1007/s00128-004-0575-x.CrossRefGoogle Scholar
  79. Yilzmar, A. B., & Yilzmar, L. (2007). Influences of sex and seasons on levels of heavy metals in tissues of green tiger shrimp (Penaeus semisulcatus de Hann, 1844). Food Chemistry, 101, 1664–1669.  https://doi.org/10.1016/j.foodchem.2006.04.025.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Bruna Mariáh da S. e Silva
    • 1
  • Gundisalvo P. Morales
    • 1
  • Ana Lúcia N. Gutjahr
    • 1
  • Kelson do C. Freitas Faial
    • 2
  • Bruno S. Carneiro
    • 2
  1. 1.Centro de Ciências Naturais e Tecnologia, Travessa Enéas PinheiroUniversidade do Estado do ParáBelémBrazil
  2. 2.Instituto Evandro ChagasAnanindeuaBrazil

Personalised recommendations