Advertisement

Spatial variability and solubility of barium in a petroleum well-drilling waste disposal area

  • Nelson Moura Brasil do Amaral Sobrinho
  • Marcos Bacis Ceddia
  • Everaldo Zonta
  • Márcio Osvaldo Lima Magalhães
  • Fábio Cardoso de Freitas
  • Erica Souto Abreu Lima
Article

Abstract

The petroleum industry generates a range of wastes which is often are disposed in soil close to the well location, negatively affecting soil and water quality. The objective of this study was to evaluate the solubility and map the spatial variability of barium in a potentially contaminated area. The study area consisted of a petroleum well-drilling waste disposal site located in the municipality of Mato Rico—PR. A large georeferenced sampling grid was organized. Soil samples were collected at depths of 30, 60, 90, and 120 cm for determination of the “pseudo-total” concentrations and geochemical fractionation of barium. The barium concentrations showed spatial dependence, which permitted the use of geostatistical interpolators. Regarding depth, the depth of 0–30 cm showed the largest contaminated area; however, higher concentrations of barium were found at the depth of 60–90 cm. The results of geochemical fractionation showed that the analyzed samples contained percentages higher than 99% in the non-labile fraction (residual). These results indicate clearly that the barium was in a condition of low solubility, even for samples that had the highest concentrations, presenting low-environmental risk.

Keywords

Geostatistics Contamination Geochemical fractionation Soil contamination 

Notes

Acknowledgements

The authors would like to thank Fapur/UFRRJ and Petrobras for the support.

References

  1. Abbasi, S., Lamb, D. T., Palanisami, T., Kader, M., Matanitobua, V., Megharaj, M., & Naidu, R. (2016). Bioaccessibility of barium from barite contaminated soils based on gastric phase in vitro data and plant uptake. Chemosphere,  https://doi.org/10.1016/j.chemosphere.2015.10.031 , 144, 1421–1427.CrossRefGoogle Scholar
  2. ABNT - Associação Brasileira de Normas Técnicas. (2004a). NBR 10004: Resíduos Sólidos—Classificação. Rio de Janeiro: ABNT.Google Scholar
  3. ABNT - Associação Brasileira de Normas Técnicas. (2004b). NBR 10005: Procedimento para obtenção de extrato lixiviado de resíduos sólidos. Rio de Janeiro: ABNT.Google Scholar
  4. ABNT - Associação Brasileira de Normas Técnicas. (2004c). NBR 10006: Procedimento para obtenção de extrato solubilizado de resíduos sólidos. Rio de Janeiro: ABNT.Google Scholar
  5. Andrade, A. F. M., Amaral Sobrinho, N. M. B., Santos, F. S., Magalhães, M. O. L., Becerra, A. T., & Lima, L. S. (2014). EDTA-induced phytoextraction of lead and barium by brachiaria (B. decumbens cv. Basilisk) in soil contaminated by oil exploration drilling waste. Acta Scientiarum Agronomy, 36, 495–500.CrossRefGoogle Scholar
  6. ATSDR - Agency for Toxic Substances and Disease Registry. (2007). Toxicological profile for barium and barium compounds. Atlanta: U.S. Department of Health and Human Services, Public Health Service.Google Scholar
  7. Ball, A. S., Stewart, R. J., & Schliephake, K. (2012). A review of the current options for the treatment and safe disposal of drill cutting. Waste Management and Research, 30, 457–473.CrossRefGoogle Scholar
  8. Baltar, C. A. M., & Luz, A. B. (2012). Barita e bentonita: funções no fluido de perfuração e potencial de uso das reservas do nordeste do Brasil. In M. Quinta-Ferreira, M. T. Barata, F. C. Lopes, A. I. Andrade, M. H. Henriques, R. Pena dos Reis, & E. Ivo Alves (Eds.), Para desenvolver a Terra: memórias e notícias de Geociências no espaço lusófono (pp. 313–320). Coimbra: Imprensa da Universidade de Coimbra.Google Scholar
  9. Bleiwas, D. I., & Miller, M. (2014). Barite—a case study of import reliance on an essential material for oil and gas exploration and development drilling. U.S. Geological Survey Scientific Investigations Report 2014–5230. Virginia.  https://doi.org/10.3133/sir20145230.
  10. Businelli, D., Massaccesi, L., Said-Pullicino, D., & Gigliotti, G. (2009). Long-term distribution, mobility and plant availability of compost-derived heavy metals in a landfill covering soil. Science of the Total Environment,  https://doi.org/10.1016/j.scitotenv.2008.10.052 , 407, 1426–1435.CrossRefGoogle Scholar
  11. Cappuyns, V. (2017). Barium (Ba) leaching from soils and certified reference materials. Applied Geochemistry, 88, 68–84.CrossRefGoogle Scholar
  12. CETESB - Companhia de Tecnologia de Saneamento Ambiental. (2014). Decisão de diretoria n° 045/2014/E/C/I de 20 de fevereiro de 2014. Dispõe sobre a aprovação dos Valores Orientadores para Solos e Águas Subterrâneas no Estado de São Paulo – 2014, em substituição aos Valores Orientadores de 2005 e dá outras providências. São Paulo: CETESB.Google Scholar
  13. CONAMA - Conselho Nacional do Meio Ambiente. (2009). Resolução n° 420, de 28 de dezembro de 2009. Diário Oficial [da República Federativa do Brasil], Brasília, DF, n° 249, de 30/12/2009, 81-84p. http://www.mma.gov.br/port/conama/legiano1.cfm? codlegitipo=3&ano=2009. Accessed 23 April 2015).
  14. Fagioli, A. S., Zimback, C. R. L., & Landim, P. M. B. (2012). Classificação de imagens em áreas cultivadas com citros por técnicas de sensoriamento remoto e geoestatística. Revista Energia na Agricultura, 27(3), 01–15.CrossRefGoogle Scholar
  15. Freitas, F. C., Presotto, R. A., Genúncio, G. C., Amaral Sobrinho, N. M. B., & Zonta, E. (2015). pH, sódio, potássio, cálcio, magnésio e alumínio em solos contaminados com fluido de perfuração de poços de petróleo após ensaios de lixiviação. Ciência Rural, 45(8), 1418–1423.CrossRefGoogle Scholar
  16. Frohne, T., Diaz-Bone, R. A., Du Laing, G., & Rinklebe, J. (2015). Impact of systematic change of redox potential on the leaching of Ba, Cr, Sr, and V from a riverine soil into water. Journal of Soils and Sediments, 15(3), 623–633.CrossRefGoogle Scholar
  17. Gasparatos, D., Mavromati, G., Kotsovilis, P., & Massas, I. (2015). Fractionation of heavy metals and evaluation of the environmental risk for the alkaline soils of the Thriassio plain: a residential, agricultural, and industrial area in Greece. Environmental Earth Sciences,  https://doi.org/10.1007/s12665-015-4096-1 , 74, 1099–1108.CrossRefGoogle Scholar
  18. Grego, C. R., Oliveira, R. P., & Vieira, S. R. (2014). Geoestatística aplicada a Agricultura de Precisão. In A. C. d. C. Bernardi, J. d. M. Naime, A. V. Resende, R. R. Inamasu, & L. H. Bassoi (Eds.), Agricultura de Precisão- Resultados de um Novo Olhar (pp. 74–83). Embrapa: Brasília.Google Scholar
  19. Isaaks, E. H., & Srivastava, R. M. (1989). An introduction to applied geostatistics. New York: Oxford University Press.Google Scholar
  20. Jeske, A. (2013). Mobility and distribution of barium and strontium in profiles of podzolic soils. Soil Science Annual, 64(1), 2–7.Google Scholar
  21. Lamb, D. T., Matanitobua, V. P., Palanisami, T., Megharaj, M., & Naidu, R. (2013). Bioavailability of barium to plants and invertebrates in soils contaminated by barite. Environmental Science & Technology, 47(9), 4670–4676.CrossRefGoogle Scholar
  22. Lima, E. S. A., Amaral Sobrinho, N. M. B., Magalhães, M. O. L., Guedes, J. N., & Zonta, E. (2012). Absorção de Bário por plantas de arroz (Oryza sativa L.) e mobilidade em solo tratado com baritina sob diferentes condições de potencial redox. Química Nova, 35, 1746–1751.CrossRefGoogle Scholar
  23. Madejón, P. (2012). Barium. In B. J. Alloway (Ed.), Heavy metals in soils. Trace metals and metalloids in soils and their bioavailability (pp. 507–514). Springer Science + Business Media: The Netherlands.Google Scholar
  24. Magalhães, M. O. L., Amaral Sobrinho, N. M. B., Zonta, E., de Carvalho, M. M., & Tolón-Becerra, A. (2012). Effect of variations in the redox potential of Gleysol on barium mobility and absorption in rice plants. Chemosphere,  https://doi.org/10.1016/j.chemosphere.2012.04.060 , 89, 121–127.CrossRefGoogle Scholar
  25. Magalhães, M. O. L., Amaral Sobrinho, N. M. B., Zonta, E., Simões, B. F., Mattos, A. G., Tolón-Becerra, A., & Lastra-Bravo, X. B. (2014a). The effects of oil well drill cuttings on soil and rice plant development (Oryza sativa) under two redox conditions. Bulletin Environmental Contamination Toxicology, 92, 311–316.  https://doi.org/10.1007/s00128-014-1196-7.CrossRefGoogle Scholar
  26. Magalhães, M. O. L., Amaral Sobrinho, N. M. B., Zonta, E., Tolón-Becerra, A., Lastra-Bravo, X. B., & Coutinho, I. B. (2014b). Reducing conditions on barium absorption in rice plants cultured in BaSO4-enriched soil. Acta Scientiarum Agronomy  https://doi.org/10.4025/actasciagron.v36i1.17539.
  27. Magalhães, M. O. L., Amaral Sobrinho, N. M. B., Lima, E. S. A., Zonta, E., & Dreitas, F. C. (2016). Efeito da aplicação e interação do cascalho de perfuração de poços de petróleo em solos intemperizados. In N. M. B. Amaral Sobrinho, C. I. Chagas, & E. Zonta (Eds.), Impactos Ambientais Provenientes da Produção Agrícola: Experiências Argentinas e Brasileiras (2nd ed., pp. 589–622). Autografia: Rio de Janeiro.Google Scholar
  28. MINEROPAR – Minerais do Paraná S.A. (2001). Atlas Geoquímico do Estado do Paraná. MINEROPAR: Curitiba.Google Scholar
  29. Miot, H. A. (2017). Assessing normality of data in clinical and experimental trials. Journal Vascular Brasileiro  https://doi.org/10.1590/1677-5449.041117.
  30. Nogueirol, R. C., & Alleoni, L. R. F. (2013). Sequential extraction and speciation of Ba, Cu, Ni, Pb and Zn in soil contaminated with automotive industry waste. Chemical Speciation & Bioavailability, 25(1), 34–42.CrossRefGoogle Scholar
  31. Pino, F. A. (2014). The question of non-normality: a review. Revista de Economia Agrícola, 61(2), 17–33.Google Scholar
  32. Rinklebe, J., Shaheen, S. M., & Yu, K. (2016). Release of As, Ba, Cd, Cu, Pb, and Sr under pre-definite redox conditions in different rice paddy soils originating from the U.S.A. and Asia. Geoderma, 270, 21–32.CrossRefGoogle Scholar
  33. Sahuquillo, A., López-Sánches, J. F., Rubio, R., Rauret, G., Thomas, R. P., Davidson, C. M., & Ure, A. (1999). Use of certified reference material for extractable trace metals to assess sources of uncertainty in the BCR three-stage sequential extraction procedure. Analytica Chimica Acta, 382, 317–327.CrossRefGoogle Scholar
  34. Sampaio Junior, J., Amaral Sobrinho, N. M. B., Zonta, E., & Magalhães, M. O. L. (2015). Barium and sodium in sunflower plants cultivated in soil treated with wastes of drilling of oil well. Revista Brasileira de Engenharia Agrícola e Ambiental, 19(11), 1100–1106.CrossRefGoogle Scholar
  35. Snyder, G. T., Dickens, G. R., & Castellini, D. G. (2007). Labile barite contents and dissolved barium concentrations on Blake Ridge: new perspectives on barium cycling above gas hydrate systems. Journal of Geochemical Exploration, 95, 48–65.CrossRefGoogle Scholar
  36. Sposito, G. (2008). The chemistry of soils (2nd ed.). New York: Oxford University Press, Inc..Google Scholar
  37. USEPA - United States Environmental Protection Agency. (1994). METHOD 3051: microwave assisted acid digestion of sediments, sludges, soils, and oils. Washington, DC: USEPA.Google Scholar
  38. USEPA - United States Environmental Protection Agency. (2005). Toxicological review of barium and compounds. Revised version of previous report dated 1999. In Support of Summary Information on the Integrated Risk Information System (IRIS). Washington, DC: USEPA. http://www.epa.gov/iris/toxreviews/0010tr.pdf>. Accessed on 04 July, 2011.
  39. Vieira, S. R., Hatfield, J. L., Nielsen, D. R., & Biggar, J. W. (1983). Geoestatistical theory and application to variability of some agronomical properties. Hilgardia, 51(3), 1–75.CrossRefGoogle Scholar
  40. Webster, R. (2008). Soil science and geostatistics. In P. Krasilnikov, F. Carré, & L. Montanarella (Eds.), Soil geography and geostatistics: concepts and applications (pp. 1–11). Luxembourg: Office for Official Publications of the European Communities.Google Scholar
  41. Yamamoto, J. K., & Lamdin, P. M. B. (2013). Geoestatística: conceitos e aplicações. São Paulo: Oficina de textos.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Nelson Moura Brasil do Amaral Sobrinho
    • 1
  • Marcos Bacis Ceddia
    • 1
  • Everaldo Zonta
    • 1
  • Márcio Osvaldo Lima Magalhães
    • 2
  • Fábio Cardoso de Freitas
    • 2
    • 3
  • Erica Souto Abreu Lima
    • 1
  1. 1.Federal Rural University of Rio de Janeiro (Universidade Federal Rural do Rio de Janeiro - UFRRJ)SeropédicaBrazil
  2. 2.Mato Grosso State University (Universidade do Estado de Mato Grosso)Tangará da SerraBrazil
  3. 3.Federal University of Rio de Janeiro (UFRRJ)Campus Três RiosBrazil

Personalised recommendations