Feasibility of applying the LED-UV-induced TiO2/ZnO-supported H3PMo12O40 nanoparticles in photocatalytic degradation of aniline

  • Mahmoud Taghavi
  • Mohammad Taghi Ghaneian
  • Mohammad Hasan Ehrampoush
  • Masoumeh Tabatabaee
  • Mojtaba Afsharnia
  • Ali Alami
  • Jalal Mardaneh
Article
  • 54 Downloads

Abstract

In the present study, TiO2/ZnO-supported phosphomolybdic acid nanoparticles are investigated by the impregnation method, followed by analyzing their photocatalytic activity under UV-LED light and degradation kinetics degrading aniline as an organic pollutant model. Nanoparticle characteristics and the remaining Keggin structure in the nanocomposites were confirmed by means of FESEM, FTIR, and XRD analyses. Heterogenization of phosphomolybdic acid on TiO2 and ZnO nanoparticles resulted in the improved light absorption intensity and decreased band gap of nanocomposites. Photocatalytic degradation of aniline was also improved for composite nanoparticles and reached to 25.62, 43.48, and 38.25% for TiO2/HPMo, ZnO/HPMo, and TiO2/ZnO/HPMo, respectively. Overall, the results showed a good fit to the Langmuir-Hinshelwood kinetic model.

Keywords

Polyoxometalate Phosphomolybdic acid Photocatalytic degradation Aniline TiO2 ZnO 

References

  1. Anotai, J., Jevprasesphant, A., Lin, Y.-M., & Lu, M.-C. (2012). Oxidation of aniline by titanium dioxide activated with visible light. Separation and Purification Technology, 84, 132–137.CrossRefGoogle Scholar
  2. Ayati, A., Heravi, M. M., Daraie, M., Tanhaei, B., Bamoharram, F. F., & Sillanpaa, M. (2016). H3PMo12O40 immobilized chitosan/Fe3O4 as a novel efficient, green and recyclable nanocatalyst in the synthesis of pyrano-pyrazole derivatives. Journal of the Iranian Chemical Society, 13(12), 2301–2308.CrossRefGoogle Scholar
  3. Choudhury, B., Dey, M., & Choudhury, A. (2013). Defect generation, d-d transition, and band gap reduction in Cu-doped TiO2 nanoparticles. International Nano Letters, 3(1), 25.CrossRefGoogle Scholar
  4. Eslami, H., Ehrampoush, M. H., Falahzadeh, H., Hematabadi, P. T., Khosravi, R., Dalvand, A., et al. (2018). Biodegradation and nutrients removal from greywater by an integrated fixed-film activated sludge (IFAS) in different organic loadings rates. AMB Express, 8(1), 3.  https://doi.org/10.1186/s13568-017-0532-9.CrossRefGoogle Scholar
  5. Feng, C., Shang, H., & Liu, X. (2014). Photocatalysis of dinitrotoluene decomposition by H3PW12O40/TiO2 and H4SiW12O40/TiO2 prepared by a modified sol-gel synthesis and solvothermal treatment method. Chinese Journal of Catalysis, 35(2), 168–174.CrossRefGoogle Scholar
  6. Huang, Q., Zhang, J., He, Z., Shi, P., Qin, X., & Yao, W. (2017). Direct fabrication of lamellar self-supporting Co3O4/N/C peroxymonosulfate activation catalysts for effective aniline degradation. Chemical Engineering Journal, 313, 1088–1098.CrossRefGoogle Scholar
  7. Jamali, A., Vanraes, R., Hanselaer, P., & Van Gerven, T. (2013). A batch LED reactor for the photocatalytic degradation of phenol. Chemical Engineering and Processing: Process Intensification, 71, 43–50.CrossRefGoogle Scholar
  8. Javidi, J., Esmaeilpour, M., Rahiminezhad, Z., & Dodeji, F. N. (2014). Synthesis and characterization of H3PW12O40 and H3PMo12O40 nanoparticles by a simple method. Journal of Cluster Science, 25(6), 1511–1524.CrossRefGoogle Scholar
  9. Khosravi, R., Eslami, H., Almodaresi, S. A., Heidari, M., Fallahzadeh, R. A., Taghavi, M., et al. (2017). Use of geographic information system and water quality index to assess groundwater quality for drinking purpose in Birjand City, Iran. Desalination and Water Treatment, 67, 74–83.CrossRefGoogle Scholar
  10. Koltsakidou, Α., Antonopoulou, M., Εvgenidou, Ε., Konstantinou, I., Giannakas, A., Papadaki, M., et al. (2017). Photocatalytical removal of fluorouracil using TiO2-P25 and N/S doped TiO2 catalysts: a kinetic and mechanistic study. Science of the Total Environment, 578, 257–267.CrossRefGoogle Scholar
  11. Ku, Y., Chiu, P.-C., & Chou, Y.-C. (2010). Decomposition of aniline in aqueous solution by UV/TiO2 process with applying bias potential. Journal of Hazardous Materials, 183(1), 16–21.CrossRefGoogle Scholar
  12. Kumari, R., Sahai, A., & Goswami, N. (2015). Effect of nitrogen doping on structural and optical properties of ZnO nanoparticles. Progress in Natural Science: Materials International, 25(4), 300–309.CrossRefGoogle Scholar
  13. Kuvarega, A. T., Krause, R. W., & Mamba, B. B. (2015). Evaluation of the simulated solar light photocatalytic activity of N, Ir co-doped TiO2 for organic dye removal from water. Applied Surface Science, 329, 127–136.CrossRefGoogle Scholar
  14. Kwiatkowski, M., Bezverkhyy, I., & Skompska, M. (2015). ZnO nanorods covered with a TiO2 layer: simple sol–gel preparation, and optical, photocatalytic and photoelectrochemical properties. Journal of Materials Chemistry A, 3(24), 12748–12760.CrossRefGoogle Scholar
  15. Leong, K. H., Monash, P., Ibrahim, S., & Saravanan, P. (2014). Solar photocatalytic activity of anatase TiO2 nanocrystals synthesized by non-hydrolitic sol–gel method. Solar Energy, 101, 321–332.CrossRefGoogle Scholar
  16. Li, N., Vorontsov, A., & Jing, L. (2015). Physicochemical properties and photocatalytic activity of H3PW12O40/TiO2. Kinetics and Catalysis, 56(3), 308–315.CrossRefGoogle Scholar
  17. López, R., & Gómez, R. (2012). Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. Journal of Sol-Gel Science and Technology, 61(1), 1–7.CrossRefGoogle Scholar
  18. Lu, N., Lu, Y., Liu, F., Zhao, K., Yuan, X., Zhao, Y., et al. (2013). H3PW12O40/TiO2 catalyst-induced photodegradation of bisphenol A (BPA): kinetics, toxicity and degradation pathways. Chemosphere, 91(9), 1266–1272.CrossRefGoogle Scholar
  19. Natarajan, T. S., Thomas, M., Natarajan, K., Bajaj, H. C., & Tayade, R. J. (2011). Study on UV-LED/TiO2 process for degradation of Rhodamine B dye. Chemical Engineering Journal, 169(1), 126–134.CrossRefGoogle Scholar
  20. Nivea, R., Gunasekaran, V., Kannan, R., Sakthivel, T., & Govindan, K. (2014). Enhanced photocatalytic efficacy of hetropolyacid pillared TiO2 nanocomposites. Journal of Nanoscience and Nanotechnology, 14(6), 4383–4386.CrossRefGoogle Scholar
  21. Norwitz, G., & Keliher, P. N. (1981). Spectrophotometric determination of aniline by the diazotization-coupling method with N-(1-naphthyl) ethylenediamine as the coupling agent. Analytical Chemistry, 53(8), 1238–1240.CrossRefGoogle Scholar
  22. Orge, C., Faria, J., & Pereira, M. (2016). Photocatalytic ozonation of aniline with TiO2-carbon composite materials. Journal of Environmental Management, In press.Google Scholar
  23. Rafiee, E., & Nobakht, N. (2015). Keggin type heteropoly acid, encapsulated in metal-organic framework: A heterogeneous and recyclable nanocatalyst for selective oxidation of sulfides and deep desulfurization of model fuels. Journal of Molecular Catalysis A: Chemical, 398, 17–25.CrossRefGoogle Scholar
  24. Samarghandy, M. R., Hoseinzade, E., Taghavi, M., & Hoseinzadeh, S. (2011). Biosorption of Reactive Black 5 from aqueous solution using acid-treated biomass from potato peel waste. BioResources, 6(4), 4840–4855.Google Scholar
  25. Sarwade, V., & Gawai, K. (2014). Biodegradation of aniline by alkaliphilic strain Bacillus badius D1. IOSR Journal of Environmental Science, Toxicology and Food Technology, 8(5), 71–78.CrossRefGoogle Scholar
  26. Shi, H., Zhang, T., An, T., Li, B., & Wang, X. (2012). Enhancement of photocatalytic activity of nano-scale TiO2 particles co-doped by rare earth elements and heteropolyacids. Journal of Colloid and Interface Science, 380(1), 121–127.CrossRefGoogle Scholar
  27. Sun, L., Li, Y., & Li, A. (2015). Treatment of actual chemical wastewater by a heterogeneous fenton process using natural pyrite. International Journal of Environmental Research and Public Health, 12(11), 13762–13778.CrossRefGoogle Scholar
  28. Szczepanik, B., & Słomkiewicz, P. (2016). Photodegradation of aniline in water in the presence of chemically activated halloysite. Applied Clay Science, 124, 31–38.CrossRefGoogle Scholar
  29. Taghavi, M., Tabatabaee, M., Ehrampoush, M. H., Ghaneian, M. T., Afsharnia, M., Alami, A., et al. (2018). Synthesis, characterization and photocatalytic activity of TiO2/ZnO-supported phosphomolybdic acid nanocomposites. Journal of Molecular Liquids, 249, 546–553.CrossRefGoogle Scholar
  30. Taghi Ghaneian, M., Ebrahimi, A., Salimi, J., Khosravi, R., Fallahzadeh, R. A., Amrollahi, M., et al. (2016). Photocatalytic degradation of 2, 4-dichlorophenoxyacetic acid from aqueous solutions using In2O3 nanoparticles. Journal of Mazandaran University of Medical Sciences, 26(137), 159–170.Google Scholar
  31. Toyoura, K., Tsujimura, H., Goto, T., Hachiya, K., Hagiwara, R., & Ito, Y. (2005). Optical properties of zinc nitride formed by molten salt electrochemical process. Thin Solid Films, 492(1), 88–92.CrossRefGoogle Scholar
  32. Wang, W., Huang, Y., & Yang, S. (2010). Photocatalytic degradation of nitrobenzene wastewater with H3PW12O40/TiO2. In Mechanic Automation and Control Engineering (MACE), 2010 International Conference on, IEEE (pp. 1303–1305).Google Scholar
  33. Wang, S., Tang, R., Zhang, Y., Chen, T., & Wang, G. (2015). 12-Molybdophosphoric acid supported on titania: a highly active and selective heterogeneous catalyst for the transesterification of dimethyl carbonate and phenol. Chemical Engineering Science, 138, 93–98.CrossRefGoogle Scholar
  34. Wei, G., Zhang, L., Wei, T., Luo, Q., & Tong, Z. (2012). UV–H2O2 degradation of methyl orange catalysed by H3PW12O40/activated clay. Environmental Technology, 33(14), 1589–1595.CrossRefGoogle Scholar
  35. Xu, L., Wang, G., Ma, F., Zhao, Y., Lu, N., Guo, Y., et al. (2012). Photocatalytic degradation of an aqueous sulfamethoxazole over the metallic silver and Keggin unit codoped titania nanocomposites. Applied Surface Science, 258(18), 7039–7046.CrossRefGoogle Scholar
  36. Xu, L., Zang, H., Zhang, Q., Chen, Y., Wei, Y., Yan, J., et al. (2013). Photocatalytic degradation of atrazine by H3PW12O40/Ag–TiO2: kinetics, mechanism and degradation pathways. Chemical Engineering Journal, 232, 174–182.CrossRefGoogle Scholar
  37. Yang, W., Gao, H., Li, S., Yan, Y., Huo, P., & Yao, W. (2008). Preparation of floatable compound photocatalyst of phosphotungstic acid/titanium dioxide/float pearls and its degradation capability to wastewater of dye. In Bioinformatics and Biomedical Engineering. ICBBE 2008. The 2nd International Conference on, 2008 (pp. 2892–2895): IEEE.Google Scholar
  38. Yang, S., Huang, Y., Wang, Y., Yang, Y., Xu, M., & Wang, G. (2012). Photocatalytic degradation of Rhodamine B with H3PW12O40/SiO2 sensitized by H2O2. International Journal of Photoenergy, 2012.Google Scholar
  39. Zabihi-Mobarakeh, H., & Nezamzadeh-Ejhieh, A. (2015). Application of supported TiO2 onto Iranian clinoptilolite nanoparticles in the photodegradation of mixture of aniline and 2, 4-dinitroaniline aqueous solution. Journal of Industrial and Engineering Chemistry, 26, 315–321.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mahmoud Taghavi
    • 1
    • 2
  • Mohammad Taghi Ghaneian
    • 1
  • Mohammad Hasan Ehrampoush
    • 1
  • Masoumeh Tabatabaee
    • 3
  • Mojtaba Afsharnia
    • 2
  • Ali Alami
    • 4
  • Jalal Mardaneh
    • 5
  1. 1.Environmental Science and Technology Research Center, Department of Environmental Health EngineeringShahid Sadoughi University of Medical SciencesYazdIran
  2. 2.Department of Environmental Health Engineering, School of Public Health, Social Development & Health Promotion Research CenterGonabad University of Medical SciencesGonabadIran
  3. 3.Department of Chemistry, Yazd BranchIslamic Azad UniversityYazdIran
  4. 4.Social Determinants of Health Research Center; Department of Social Medicine, School of MedicineGonabad University of Medical SciencesGonabadIran
  5. 5.Department of Microbiology, School of MedicineGonabad University of Medical SciencesGonabadIran

Personalised recommendations