Skip to main content
Log in

Predicting mayfly recovery in acid mine-impaired streams using logistic regression models of in-stream habitat and water chemistry

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Mayflies (Order Ephemeroptera) require high quality water and habitat in streams to thrive, so their appearance after restoration is an indicator of ecological recovery. To better understand the importance of restoring in-stream habitat versus water chemistry for macroinvertebrate communities, we developed taxon-specific models of occurrence for five mayfly genera (Caenis, Isonychia, Stenonema, Stenacron, and Baetis) inhabiting streams in the Appalachian Mountains, USA. Presence/absence records from past decades were used to develop single and multiple logistic predictive models based on catchment characteristics (drainage area, gradient), in-stream habitat variables (e.g., substrate, channel morphology, pool and riffle quality), and water chemistry. Model performance was evaluated using (a) classification rates and Hosmer-Lemeshow values for test sets of data withheld from the original model-building dataset and (b) a field comparison of predicted versus observed mayfly occurrences at 53 sites in acid mine drainage-impaired watersheds in 2012. The classification accuracies of final models for Caenis, Stenacron, and Baetis ranged from 50 to 75%. In-stream habitat features were not significant predictor variables for these three taxa, only water chemistry. Models for Isonychia and Stenonema had higher classification rates (81%) and included both habitat and chemical variables. However, actual occurrences of Isonychia and Stenonema at study sites in 2012 were low, consistent with the calculated probability of occurrence (Po) < 0.60. Caenis occurred at test sites 35% of the time when the model predicted a Po > 0.40. Stenacron showed the greatest consistency of actual versus predicted occurrences, occurring at 56% of sites when the Po (based on pH and conductivity) was > 0.50 and only at 1 site when Po < 0.5. The results demonstrate how predictive models of individual indicator taxa could be valuable for evaluating the relative impacts of restoring physical habitat versus water chemistry during stream remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmadi-Nedushan, B., St‐Hilaire, A., Bérubé, M., Robichaud, É., Thiémonge, N., & Bobée, B. (2006). A review of statistical methods for the evaluation of aquatic habitat suitability for instream flow assessment. River Research and Applications, 22(5), 503–523.

  • Battaglia, M., Hose, G. C., Turak, E., & Warden, B. (2005). Depauperate macroinvertebrates in a mine affected stream: clean water may be the key to recovery. Environmental Pollution, 138(1), 132–141.

    Article  CAS  Google Scholar 

  • Beechie, T. J., & Sibley, T. H. (1997). Relationships between channel characteristics, woody debris, and fish habitat in northwestern Washington streams. Transactions of the American Fisheries Society, 126(2), 217–229.

    Article  Google Scholar 

  • Bott, T. L., Jackson, J. K., McTammany, M. E., Newbold, J. D., Rier, S. T., Sweeney, B. W., & Battle, J. M. (2012). Abandoned coal mine drainage and its remediation: impacts on stream ecosystem structure and function. Ecological Applications, 22(8), 2144–2163.

    Article  Google Scholar 

  • Bowman, J. and Johnson, K. S. (2016) 2015 comprehensive non-point source (NPS) monitoring report for acid mine drainage (AMD), http://www.watersheddata.com/UserView_Report.aspx

  • Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference (2nd ed.). New York: Springer.

    Google Scholar 

  • Carlisle, D. M., & Clements, W. H. (2005). Leaf litter breakdown, microbial respiration and shredder production in metal-polluted streams. Freshwater Biology, 50(2), 380–390.

    Article  CAS  Google Scholar 

  • Churchel, M. A., & Batzer, D. P. (2006). Recovery of aquatic macroinvertebrate communities from drought in Georgia Piedmont headwater streams. The American Midland Naturalist, 156(2), 259–272.

    Article  Google Scholar 

  • Cohen, R. R. H., & Gorman, J. (1991). Mining-related nonpoint source pollution. Water Environment and Technology, 3, 55–59.

    Google Scholar 

  • Corkum, L. D. (1989). Habitat characterization of the morphologically similar mayfly larvae, Caenis and Tricorythodes (Ephemeroptera). Hydrobiologia, 179(2), 103–109.

    Article  Google Scholar 

  • Cormier, S. M., Suter, G. W., & Zheng, L. (2013). Derivation of a benchmark for freshwater ionic strength. Environmental Toxicology and Chemistry, 32(2), 263–271.

    Article  CAS  Google Scholar 

  • Cruz, M. J., Rebelo, R., & Crespo, E. (2006). Effects of an introduced crayfish, Procambarus clarkii, on the distribution of south-western Iberian amphibians in their breeding habitats. Ecography, 29(3), 329–338.

    Article  Google Scholar 

  • Cruz, M. J., & Rebelo, R. (2007). Colonization of freshwater habitats by an introduced crayfish, Procambarus clarkii, in Southwest Iberian Peninsula. Hydrobiologia, 575(1), 191–201.

    Article  Google Scholar 

  • Edwards, R. T., & Meyer, J. L. (1990). Bacterivory by deposit-feeding mayfly larvae (Stenonema spp.) Freshwater Biology, 24(3), 453–462.

    Article  Google Scholar 

  • Eyre, M. D., Pilkington, J. G., Carr, R., McBlane, R. P., Rushton, S. P., & Foster, G. N. (1993). The running-water beetles (Coleoptera) of a river catchment in northern England. Hydrobiologia, 264(1), 33–45.

    Article  Google Scholar 

  • Echols, B. S., Currie, R. J., & Cherry, D. S. (2010). Preliminary results of laboratory toxicity tests with the mayfly, Isonychia bicolor (Ephemeroptera: Isonychiidae) for development as a standard test organism for evaluating streams in the Appalachian coalfields of Virginia and West Virginia. Environmental Monitoring and Assessment, 169(1–4), 487–500.

    Article  CAS  Google Scholar 

  • Ferrier, S., Drielsma, M., Manion, G., & Watson, G. (2002). Extending statistical approaches to modelling spatial patternin biodiversity in northeast New South Wales. II. Community-level modelling. Biodiversity and Conservation, 11, 2309–2338.

    Article  Google Scholar 

  • Fritz, K. M., & Dodds, W. K. (2004). Resistance and resilience of macroinvertebrate assemblages to drying and flood in a tallgrass prairie stream system. Hydrobiologia, 527(1), 99–112.

    Article  Google Scholar 

  • Fuchs, U., & Statzner, B. (1990). Time scales for the recovery potential of river communities after restoration: lessons to be learned from smaller streams. River Research and Applications, 5(1), 77–87.

    Google Scholar 

  • Gjerløv, C., Hildrew, A. G., & Jones, J. I. (2003). Mobility of stream invertebrates in relation to disturbance and refugia: a test of habitat templet theory. Journal of the North American Benthological Society, 22(2), 207–223.

    Article  Google Scholar 

  • Gore, J. A., Layzer, J. B., & Mead, J. (2001). Macroinvertebrate in stream flow studies after 20 years: a role in stream management and restoration. Regulated Rivers: Research & Management, 17, 527–542.

    Article  Google Scholar 

  • Gore, J. A., & Bryant Jr., R. M. (1990). Temporal shifts in physical habitat of the crayfish, Orconectes neglectus (Faxon). Hydrobiologia, 199(2), 131–142.

    Article  Google Scholar 

  • Gray, N. F. (1997). Environmental impact and remediation of acid mine drainage: a management problem. Environmental Geology, 30(1–2), 62–71.

    Article  CAS  Google Scholar 

  • Harries, J. R. (1997). Acid mine drainage in Australia: its extent and potential future liability. Canberra: Supervising Scientist.

    Google Scholar 

  • Hawkins, C. P., Norris, R. H., Hogue, J. N., & Feminella, J. W. (2000). Development and evaluation of predictive models for measuring the biological integrity of streams. Ecological Applications, 10, 1456–1477.

    Article  Google Scholar 

  • Hamsher, S. E., Verb, R. G., & Vis, M. L. (2004). Analysis of acid mine drainage impacted streams using a periphyton index. Journal of Freshwater Ecology, 19(2), 313–324.

    Article  Google Scholar 

  • Hastie, L. C., Cooksley, S. L., Scougall, F., Young, M. R., Boon, P. J., & Gaywood, M. J. (2003). Characterization of freshwater pearl mussel (Margaritifera Mmargaritifera) riverine habitat using River Habitat Survey data. Aquatic Conservation: Marine and Freshwater Ecosystems, 13(3), 213–224.

    Article  Google Scholar 

  • Heino, J., & Mykrä, H. (2006). Assessing physical surrogates for biodiversity: do tributary and stream type classifications reflect macroinvertebrate assemblage diversity in running waters? Biological Conservation, 129(3), 418–426.

    Article  Google Scholar 

  • Hogsden, K. L., & Harding, J. S. (2011). Consequences of acid mine drainage for the structure and function of benthic stream communities: a review. Freshwater Science, 31(1), 108–120.

    Article  Google Scholar 

  • Hogsden, K. L., & Harding, J. S. (2012). Anthropogenic and natural sources of acidity and metals and their influence on the structure of stream food webs. Environmental Pollution, 162, 466–474.

    Article  CAS  Google Scholar 

  • Holland-Bartels, L. E. (1990). Physical factors and their influence on the mussel fauna of a main channel border habitat of the upper Mississippi River. Journal of the North American Benthological Society, 9(4), 327–335.

    Article  Google Scholar 

  • Hosmer, D. W., & Lemeshow, S. (1989). Applied regression analysis. New York: John Wiley.

    Google Scholar 

  • IBM Corp. (2013). IBM SPSS Statistics for Windows, version 22.0. Armonk: IBM Corp.

    Google Scholar 

  • Jennings, S. R., Blicker, P. S., & Neuman, D. R. (2008). Acid mine drainage and effects on fish health and ecology: a review. Bozeman: Reclamation Research Group.

    Google Scholar 

  • Johnson, K. S. (2007). Field and laboratory methods for using the MAIS (Macroinvertebrate Aggregated Index for Streams) in Rapid Bioassessment of Ohio Streams. Can be accessed at http://www.epa.ohio.gov/dsw/credibledata/references.aspx. Accessed 28 Feb 2018

  • Johnson, D. B., & Hallberg, K. B. (2005). Acid mine drainage remediation options: a review. Science of the Total Environment, 338(1), 3–14.

    Article  CAS  Google Scholar 

  • Johnson, K. S., Thompson, P. C., Gromen, L., & Bowman, J. (2014). Spatial patterns in macroinvertebrate recovery and leaf litter breakdown in an acid mine impacted stream treated with an active alkaline doser. Environmental Monitoring and Assessment, 186(7), 4111–4127.

    Article  CAS  Google Scholar 

  • Joy, M. K., & Death, R. G. (2004). Predictive modelling and spatial mapping of freshwater fish and decapod assemblages using GIS and neural networks. Freshwater Biology, 49(8), 1036–1052.

    Article  Google Scholar 

  • Karr, J. R. (1995). Protecting aquatic ecosystems: clean water is not enough. WS Davis and TP Simon. Biological assessment and criteria. Tools for water resource planning and decision making (pp. 7–13). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Kennedy, A. J., Cherrry, D. S., & Currie, R. J. (2004). Evaluation of ecologically relevant bioassays for a lotic system impacted by a coal-mine effluent, using Isonychia. Environmental Monitoring and Assessment, 95(1–3), 37–55.

    Article  CAS  Google Scholar 

  • Knapp, R. A., & Preisler, H. K. (1999). Is it possible to predict habitat use by spawning salmonids? A test using California golden trout (Oncorhynchus mykiss aguabonita). Canadian Journal of Fisheries and Aquatic Sciences, 56(9), 1576–1584.

    Article  Google Scholar 

  • Kondratieff, B. C., & Voshell Jr., J. R. (1984). The North and Central American species of Isonychia (Ephemeroptera: Oligoneuriidae). Transactions of the American Entomological Society, 1, 129–244.

    Google Scholar 

  • Kowalik, R. A., Cooper, D. M., Evans, C. D., & Ormerod, S. J. (2007). Acidic episodes retard the biological recovery of upland British streams from chronic acidification. Global Change Biology, 13(11), 1365–2486.

    Article  Google Scholar 

  • Kruse, N. A., Bowman, J. R., Mackey, A. L., McCament, B., & Johnson, K. S. (2012). The lasting impacts of offline periods in lime dosed streams: a case study in Raccoon Creek, Ohio. Mine Water and the Environment, 31(4), 266–272.

    Article  CAS  Google Scholar 

  • Leftwich, K. N., Angermeier, P. L., & Dolloff, C. A. (1997). Factors influencing behavior and transferability of habitat models for a benthic stream fish. Transactions of the American Fisheries Society, 126(5), 725–734.

    Article  Google Scholar 

  • Letovsky, E., Myers, I. E., Canepa, A., & McCabe, D. J. (2012). Differences between kick sampling techniques and short-term Hester-Dendy sampling for stream macroinvertebrates. Bios, 83(2), 47–55.

    Article  Google Scholar 

  • Light, T. (2003). Success and failure in a lotic crayfish invasion: the roles of hydrologic variability and habitat alteration. Freshwater Biology, 48(10), 1886–1897.

    Article  Google Scholar 

  • Linke, S., Norris, R. H., Faith, D. P., & Stockwell, D. (2005). ANNA: a new prediction method for bioassessment programs. Freshwater Biology, 50(1), 147–158.

    Article  Google Scholar 

  • Louhi, P., Mykrä, H., Paavola, R., Huusko, A., Vehanen, T., Mäki-Petäys, A., & Muotka, T. (2011). Twenty years of stream restoration in Finland: little response by benthic macroinvertebrate communities. Ecological Applications, 21(6), 1950–1961.

    Article  Google Scholar 

  • McCabe, D. J., Hayes-Pontius, E. M., Canepa, A., Berry, K. S., & Levine, B. C. (2012). Measuring standardized effect size improves interpretation of biomonitoring studies and facilitates meta-analysis. Freshwater Science, 31(3), 800–812.

    Article  Google Scholar 

  • Macanowicz, N., Boeing, W. J., & Gould, W. R. (2013). Evaluation of methods to assess benthic biodiversity of desert sinkholes. Freshwater Science, 32(4), 1101–1110.

    Article  Google Scholar 

  • Manel, S., Dias, J., & Ormerod, S. J. (1999). Comparing discriminant analysis, neural networks and logistic regression for predicting species distributions: a case study with a Himalayan river bird. Ecological Modelling, 120(2), 337–347.

    Article  Google Scholar 

  • Manel, S., Williams, H. C., & Ormerod, S. J. (2001). Evaluating presence–absence models in ecology: the need to account for prevalence. Journal of Applied Ecology, 38, 921–931.

    Article  Google Scholar 

  • Meier, P. G., Penrose, D. L., & Polak, L. (1979). The rate of colonization by macro-invertebrates on artificial substrate samplers.

  • Merritt, R. W., & Cummins, K. W. (1996). An introduction to the aquatic insects of North America. Dubuque: Kendall Hunt.

    Google Scholar 

  • Miller, S. W., Budy, P., & Schmidt, J. C. (2009). Quantifying macroinvertebrate responses to instream habitat restoration: applications of meta-analyses to river restoration. Restoration Ecology, 18, 8–19.

    Article  Google Scholar 

  • Modde, T., & Drewes, H. G. (1990). Comparison of biotic index values for invertebrate collections from natural and artificial substrates. Freshwater Biology, 23(2), 171–180.

    Article  Google Scholar 

  • Murphy, J. F., Winterbottom, J. H., Orton, S., Simpson, G. L., Shilland, E. M., & Hildrew, A. G. (2014). Evidence of recovery from acidification in the macroinvertebrate assemblages of UK fresh waters: a 20-year time series. Ecological Indicators, 37, 330–340.

    Article  CAS  Google Scholar 

  • Naidoo, B. (2009). Acid mine drainage single most significant threat to South Africa’s environment. Mining Weekly, 8.

  • Nelson, S. M., & Roline, R. A. (1996). Recovery of a stream macroinvertebrate community from mine drainage disturbance. Hydrobiologia, 339(1–3), 73–84.

    Article  Google Scholar 

  • Niyogi, D. K., Lewis Jr., W. M., & McKnight, D. M. (2001). Litter breakdown in mountain streams affected by mine drainage: biotic mediation of abiotic controls. Ecological Applications, 11(2), 506–516.

    Article  Google Scholar 

  • Niyogi, D. K., Harding, J. S., & Simon, K. S. (2013). Organic matter breakdown as a measure of stream health in New Zealand streams affected by acid mine drainage. Ecological Indicators, 24, 510–517.

    Article  CAS  Google Scholar 

  • O'Halloran, K., Cavanagh, J. A., & Harding, J. S. (2008). Response of a New Zealand mayfly (Deleatidium spp.) to acid mine drainage: implications for mine remediation. Environmental Toxicology and Chemistry, 27(5), 1135–1140.

    Article  Google Scholar 

  • Ohio, E. P. A. (1989). Biological criteria for the protection of aquatic life. In Standardized biological field sampling and laboratory methods for assessing fish and macroinvertebrate communities (Vol. III). Columbus: Ohio Environmental Protection Agency.

    Google Scholar 

  • Ohio, E. P. A. (2006). Methods for assessing habitat in flowing waters: using the qualitative habitat evaluation index (QHEI). Technical Bulletin EAS/2006-06-01.

  • Ohio, E. P. A. (1999). Ohio EPA five year monitoring surface water monitoring and assessment strategy, 2000–2004. Ohio EPA Tech. Bu ll. MAS/1999–7-2. Ohio: Division of Surface Water, Monitoring and Assessment Section, Columbus.

  • Olden, J. D. (2003). A species-specific approach to modeling biological communities and its potential for conservation. Conservation Biology, 17, 854–863.

    Article  Google Scholar 

  • Olden, J. D., Joy, M. K., & Death, R. G. (2006). Rediscovering the species in community-wide predictive modeling. Ecological Applications, 16(4), 1449–1460.

    Article  Google Scholar 

  • Omernik, J. M. (1987). Ecoregions of the conterminous United States. Annals of the Association of American Geographers, 77(1), 118–125.

    Article  Google Scholar 

  • Palmer, M. A., Menninger, H., & Bernhardt, E. (2010). River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice? Freshwater Biology, 55(Supplement 1), 205–222.

    Article  Google Scholar 

  • Pander, J., & Geist, J. (2013). Ecological indicators for stream restoration success. Ecological Indicators, 30, 106–118.

    Article  Google Scholar 

  • Park, Y. S., Verdonschot, P. F., Chon, T. S., & Lek, S. (2003). Patterning and predicting aquatic macroinvertebrate diversities using artificial neural network. Water research, 37(8), 1749–1758.

  • Peeters, E. T. (1998). Logistic regression as a tool for defining habitat requirements of two common gammarids. Freshwater Biology, 39(4), 605–615.

    Article  Google Scholar 

  • Pond, G. J. (2010). Patterns of Ephemeroptera taxa loss in Appalachian headwater streams (Kentucky, USA). Hydrobiologia, 641(1), 185–201.

    Article  Google Scholar 

  • Pond, G. J. (2012). Biodiversity loss in Appalachian headwater streams (Kentucky, USA): Plecoptera and Trichoptera communities. Hydrobiologia, 679(1), 97–117.

    Article  CAS  Google Scholar 

  • Pond, G. J., Passmore, M. E., Pointon, N. D., Felbinger, J. K., Walker, C. A., Krock, K. J., Fulton, J. B., & Nash, W. L. (2014). Long-term impacts on macroinvertebrates downstream of reclaimed mountaintop mining valley fills in central Appalachia. Environmental Management, 54(4), 919–933.

    Article  Google Scholar 

  • Puckett, R. T., & Cook, J. L. (2004). Physiological tolerance ranges of larval Caenis latipennis (Ephemeroptera: Caenidae) in response to fluctuations in dissolved oxygen concentration, pH and temperature. Texas Journal of Science, 56(2), 123–130.

    Google Scholar 

  • Rader, R. B. (1997). A functional classification of the drift: traits that influence invertebrate availability to salmonids. Canadian Journal of Fisheries and Aquatic Sciences, 54(6), 1211–1234.

    Article  Google Scholar 

  • Ramcharan, C. W., Padilla, D. K., & Dodson, S. I. (1992). Models to predict potential occurrence and density of the zebra mussel, Dreissena polymorpha. Canadian Journal of Fisheries and Aquatic Sciences, 49(12), 2611–2620.

    Article  Google Scholar 

  • Rankin, E. T. (1989). The qualitative habitat evaluation index (QHEI): rationale, methods, and application. Div. Water Qual. Plan. & Assess., Ecol. Assess. Sect., Columbus.

  • Rankin, E. T. (1995). Habitat indices in water resource quality assessment. In W. S. Davis & T. P. Simon (Eds.), Biological assessment and criteria (pp. 181–214). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Randolph, R. P., & McCafferty, W. P. (1998). Diversity and distribution of the mayflies (Ephemeroptera) of Illinois, Indiana, Kentucky, Michigan, Ohio and Wisconsin. Ohio Biological Survey Bulletin New Series, 13(1), 1–188.

    Google Scholar 

  • Richards, C., & Minshall, G. W. (1992). Spatial and temporal trends in stream macroinvertebrate communities: the influence of catchment disturbance. Hydrobiologia, 241(3), 173–194.

  • Rinella, D. J., & Feminella, J. W. (2005). Comparison of benthic macroinvertebrates colonizing sand, wood, and artificial substrates in a low-gradient stream. Journal of Freshwater Ecology, 20(2), 209–220.

    Article  Google Scholar 

  • Rosenberg, D. M., & Resh, V. H. (1982). The use of artificial substrates in the study of freshwater benthic macroinvertebrates. In J. Cairns (Ed.), Artificial substrates (pp. 175–235). Ann Arbor: Ann Arbor Science.

    Google Scholar 

  • Simmons, J. A., Lawrence, E. R., & Jones, T. G. (2005). Treated and untreated acid mine drainage effects on stream periphyton biomass, leaf decomposition, and macroinvertebrate diversity. Journal of Freshwater Ecology, 20(3), 413–424.

    Article  Google Scholar 

  • Smith, E. P., & Voshell, J. R. (1997). Studies of benthic macroinvertebrates and fish in streams within EPA region 3 for development of biological indicators of ecological condition. Blacksburg: Virginia Polytechnic Institute and State University.

    Google Scholar 

  • Snucins, E. (2003). Recolonization of acid-damaged lakes by the benthic invertebrates Stenacron interpunctatum, Stenonema femoratum and Hyalella azteca. Ambio: A Journal of the Human Environment, 32(3), 225–229.

    Article  Google Scholar 

  • Solà, C., Burgos, M., Plazuelo, Á., Toja, J., Plans, M., & Prat, N. (2004). Heavy metal bioaccumulation and macroinvertebrate community changes in a Mediterranean stream affected by acid mine drainage and an accidental spill (Guadiamar River, SW Spain). Science of the Total Environment, 333(1), 109–126.

    Article  Google Scholar 

  • Steyerburg, E. (2009). Clinical prediction models: a practical approach to development, validation and updating, (Chapters 9 & 12). New York: Springer-Verlag.

  • Symonds, M. R., & Moussalli, A. (2011). A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behavioral Ecology and Sociobiology, 65(1), 13–21.

    Article  Google Scholar 

  • Taylor, J. M., & Kennedy, J. H. (2006). Life history and secondary production of Caenis latipennis (Ephemeroptera: Caenidae) in Honey Creek, Oklahoma. Annals of the Entomological Society of America, 99(5), 821–830.

    Article  Google Scholar 

  • Tronstad, L. M., & Hotaling, S. (2017). Long-term trends in aquatic ecosystem bioassessment metrics are not influenced by sampling method: empirical evidence from the Niobrara River. Knowledge and Management of Aquatic Ecosystems, (418), 28.

  • U.S. Environmental Protection Agency. (2002). Mid-Atlantic acidification, report, Washington, D. C. Available at http://www.epa.gov/region03/acidification.

  • Usio, N. (2007). Endangered crayfish in northern Japan: distribution, abundance and microhabitat specificity in relation to stream and riparian environment. Biological Conservation, 134(4), 517–526.

    Article  Google Scholar 

  • U.S. Department of the Interior | U.S. Geological Survey URL: http://streamstats.usgs.gov/ Page Contact Information: GS-W_Streamstats@usgs.gov Page Last Modified: Monday, 13-Jul-2015 09:44:12 EDT.

  • Van Sickle, J., & Hughes, R. M. (2000). Classification strengths of ecoregions, catchments, and geographic clusters for aquatic vertebrates in Oregon. Journal of the North American Benthological Society, 19(3), 370–384.

    Article  Google Scholar 

  • Verb, R. G., & Vis, M. L. (2005). Periphyton assemblages as bioindicators of mine-drainage in unglaciated Western Allegheny Plateau lotic systems. Water, Air, and Soil Pollution, 161(1–4), 227–265.

    Article  CAS  Google Scholar 

  • Walter, C. A., Nelson, D., & Earle, J. I. (2012). Assessment of stream restoration: sources of variation in macroinvertebrate recovery throughout an 11-year study of coal mine drainage treatment. Restoration Ecology, 20(4), 431–440.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the American Electric Power Foundation and the Ohio Department of Natural Resources, Division of Mineral Resources for funding and the Environmental Studies program at Ohio University and Voinovich School for general support for students, faculty, and staff. Steve Porter and Liz Migliore assisted with statistical analyses and graphics. Jeff Calhoun of Ohio Department of Natural Resources helped conduct habitat assessments for the study sites and we especially thank Michele Shively, Amy Mackey, Sarah Landers, and Nate Schlater for invaluable assistance with water chemistry and biological collection. Special thanks go to Pete Thompson for help with mayfly enumeration and identification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly S. Johnson.

Electronic supplementary material

Supplementary Table 1

(DOCX 21 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, K.S., Rankin, E., Bowman, J. et al. Predicting mayfly recovery in acid mine-impaired streams using logistic regression models of in-stream habitat and water chemistry. Environ Monit Assess 190, 196 (2018). https://doi.org/10.1007/s10661-018-6548-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6548-z

Keywords

Navigation